When.com Web Search

  1. Ads

    related to: lumen learning zeros and multiplicity meaning in math worksheets answers

Search results

  1. Results From The WOW.Com Content Network
  2. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    The concept of multiplicity is fundamental for Bézout's theorem, as it allows having an equality instead of a much weaker inequality. Intuitively, the multiplicity of a common zero of several polynomials is the number of zeros into which the common zero can split when the coefficients are slightly changed.

  3. Transcendental number theory - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number_theory

    Here "many zeros" may mean many distinct zeros, or as few as one zero but with a high multiplicity, or even many zeros all with high multiplicity. Charles Hermite used auxiliary functions that approximated the functions e k x {\displaystyle e^{kx}} for each natural number k {\displaystyle k} in order to prove the transcendence of e ...

  4. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    This definition allows us to state Bézout's theorem and its generalizations precisely. This definition generalizes the multiplicity of a root of a polynomial in the following way. The roots of a polynomial f are points on the affine line, which are the components of the algebraic set defined by the polynomial.

  5. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    In various areas of mathematics, the zero set of a function is the set of all its zeros. More precisely, if f : X → R {\displaystyle f:X\to \mathbb {R} } is a real-valued function (or, more generally, a function taking values in some additive group ), its zero set is f − 1 ( 0 ) {\displaystyle f^{-1}(0)} , the inverse image of { 0 ...

  6. Valuation (algebra) - Wikipedia

    en.wikipedia.org/wiki/Valuation_(algebra)

    It generalizes to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis, the degree of divisibility of a number by a prime number in number theory, and the geometrical concept of contact between two algebraic or analytic varieties in algebraic geometry.

  7. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    The other terms also correspond to zeros: the dominant term li(x) comes from the pole at s = 1, considered as a zero of multiplicity −1, and the remaining small terms come from the trivial zeros. For some graphs of the sums of the first few terms of this series see Riesel & Göhl (1970) or Zagier (1977) .

  8. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    Its zeros in the left halfplane are all the negative even integers, and the Riemann hypothesis is the conjecture that all other zeros are along Re(z) = 1/2. In a neighbourhood of a point z 0 , {\displaystyle z_{0},} a nonzero meromorphic function f is the sum of a Laurent series with at most finite principal part (the terms with negative index ...

  9. Intersection number - Wikipedia

    en.wikipedia.org/wiki/Intersection_number

    In mathematics, and especially in algebraic geometry, the intersection number generalizes the intuitive notion of counting the number of times two curves intersect to higher dimensions, multiple (more than 2) curves, and accounting properly for tangency. One needs a definition of intersection number in order to state results like Bézout's theorem.