Search results
Results From The WOW.Com Content Network
Likelihood Ratio: An example "test" is that the physical exam finding of bulging flanks has a positive likelihood ratio of 2.0 for ascites. Estimated change in probability: Based on table above, a likelihood ratio of 2.0 corresponds to an approximately +15% increase in probability.
Diagram relating pre- and post-test probabilities, with the green curve (upper left half) representing a positive test, and the red curve (lower right half) representing a negative test, for the case of 90% sensitivity and 90% specificity, corresponding to a likelihood ratio positive of 9, and a likelihood ratio negative of 0.111.
The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.
The numerator of this ratio is less than the denominator; so, the likelihood ratio is between 0 and 1. Low values of the likelihood ratio mean that the observed result was much less likely to occur under the null hypothesis as compared to the alternative.
The likelihood ratio is central to likelihoodist statistics: the law of likelihood states that the degree to which data (considered as evidence) supports one parameter value versus another is measured by the likelihood ratio. In frequentist inference, the likelihood ratio is the basis for a test statistic, the so-called likelihood-ratio test.
In frequentist inference, the likelihood ratio is used in the likelihood-ratio test, but other non-likelihood tests are used as well. The Neyman–Pearson lemma states the likelihood-ratio test is equally statistically powerful as the most powerful test for comparing two simple hypotheses at a given significance level , which gives a ...
It is the most widely used of many chi-squared tests (e.g., Yates, likelihood ratio, portmanteau test in time series, etc.) – statistical procedures whose results are evaluated by reference to the chi-squared distribution. Its properties were first investigated by Karl Pearson in 1900. [1]
For the figure that shows high sensitivity and low specificity, there are 3 FN and 8 FP. Using the fact that positive results = true positives (TP) + FP, we get TP = positive results - FP, or TP = 40 - 8 = 32. The number of sick people in the data set is equal to TP + FN, or 32 + 3 = 35. The sensitivity is therefore 32 / 35 = 91.4%.