Ads
related to: magic number examples for kids chart list printable worksheets
Search results
Results From The WOW.Com Content Network
A graph of isotope stability, with some of the magic numbers. In nuclear physics, a magic number is a number of nucleons (either protons or neutrons, separately) such that they are arranged into complete shells within the atomic nucleus. As a result, atomic nuclei with a "magic" number of protons or neutrons are much more stable than other nuclei.
A magic circle can be derived from one or more magic squares by putting a number at each intersection of a circle and a spoke. Additional spokes can be added by replicating the columns of the magic square. In the example in the figure, the following 4 × 4 most-perfect magic square was copied into the upper part of the magic circle. Each number ...
The number zero for n = 6 is an example of a more general phenomenon: associative magic squares do not exist for values of n that are singly even (equal to 2 modulo 4). [3] Every associative magic square of even order forms a singular matrix, but associative magic squares of odd order can be singular or nonsingular. [4]
In their book, Kathleen Ollerenshaw and David S. Brée give a method of construction and enumeration of all most-perfect magic squares. They also show that there is a one-to-one correspondence between reversible squares and most-perfect magic squares. For n = 36, there are about 2.7 × 10 44 essentially different most-perfect magic squares.
Since each 2 × 2 subsquare sums to the magic constant, 4 × 4 pandiagonal magic squares are most-perfect magic squares. In addition, the two numbers at the opposite corners of any 3 × 3 square add up to half the magic constant. Consequently, all 4 × 4 pandiagonal magic squares that are associative must have duplicate cells.
Other magic triangles use Triangular number or square number of vertices to form magic figure. Matthew Wright and his students in St. Olaf College developed magic triangles with square numbers. In their magic triangles, the sum of the k-th row and the (n-k+1)-th row is same for all k.