Search results
Results From The WOW.Com Content Network
Mott insulators are of growing interest in advanced physics research, and are not yet fully understood. They have applications in thin-film magnetic heterostructures and the strong correlated phenomena in high-temperature superconductivity , for example.
Since then, these materials as well as others exhibiting a transition between a metal and an insulator have been extensively studied, e.g. by Sir Nevill Mott, after whom the insulating state is named Mott insulator. The first metal-insulator transition to be found was the Verwey transition of magnetite in the 1940s. [3]
Sir Nevill Francis Mott (30 September 1905 – 8 August 1996) was a British physicist who won the Nobel Prize for Physics in 1977 for his work on the electronic structure of magnetic and disordered systems, especially amorphous semiconductors.
The Mott insulating phases are characterized by integer boson densities, by the existence of an energy gap for particle-hole excitations, and by zero compressibility. The superfluid is characterized by long-range phase coherence, a spontaneous breaking of the Hamiltonian's continuous U ( 1 ) {\displaystyle U(1)} symmetry, a non-zero ...
The perovskite structure of BSCCO, a high-temperature superconductor and a strongly correlated material.. Strongly correlated materials are a wide class of compounds that include insulators and electronic materials, and show unusual (often technologically useful) electronic and magnetic properties, such as metal-insulator transitions, heavy fermion behavior, half-metallicity, and spin-charge ...
Peierls and Nevill Francis Mott predict the breakdown of band theory in the presence of interactions. They postulate the Mott insulator. Wannier functions are introduced by Gregory Wannier. Conyers Herring theorizes the possibility of Weyl semimetals. [62] 1938 – Superfluidity is discovered by the team of Pyotr Kapitsa.
In condensed matter physics, the resonating valence bond theory (RVB) is a theoretical model that attempts to describe high-temperature superconductivity, and in particular the superconductivity in cuprate compounds. It was first proposed by an American physicist P. W. Anderson and Indian theoretical physicist Ganapathy Baskaran in 1987.
An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force resulting from their opposite charges. It is an electrically neutral quasiparticle regarded as an elementary excitation primarily in condensed matter, such as insulators, semiconductors, some metals, and in some liquids.