Ad
related to: lambda calculus creator pdf editor
Search results
Results From The WOW.Com Content Network
Lambda calculus is Turing complete, that is, it is a universal model of computation that can be used to simulate any Turing machine. [3] Its namesake, the Greek letter lambda (λ), is used in lambda expressions and lambda terms to denote binding a variable in a function.
In the 1930s Alonzo Church sought to use the logistic method: [a] his lambda calculus, as a formal language based on symbolic expressions, consisted of a denumerably infinite series of axioms and variables, [b] but also a finite set of primitive symbols, [c] denoting abstraction and scope, as well as four constants: negation, disjunction, universal quantification, and selection respectively ...
A typed lambda calculus is a typed formalism that uses the lambda-symbol to denote anonymous function abstraction.In this context, types are usually objects of a syntactic nature that are assigned to lambda terms; the exact nature of a type depends on the calculus considered (see kinds below).
The purpose of β-reduction is to calculate a value. A value in lambda calculus is a function. So β-reduction continues until the expression looks like a function abstraction. A lambda expression that cannot be reduced further, by either β-redex, or η-redex is in normal form. Note that alpha-conversion may convert functions.
The lambda cube. Direction of each arrow is direction of inclusion. In mathematical logic and type theory, the λ-cube (also written lambda cube) is a framework introduced by Henk Barendregt [1] to investigate the different dimensions in which the calculus of constructions is a generalization of the simply typed λ-calculus.
In computer science, lambda calculi are said to have explicit substitutions if they pay special attention to the formalization of the process of substitution.This is in contrast to the standard lambda calculus where substitutions are performed by beta reductions in an implicit manner which is not expressed within the calculus; the "freshness" conditions in such implicit calculi are a notorious ...
Hendrik Pieter (Henk) Barendregt (born 18 December 1947, Amsterdam) [1] is a Dutch logician, known for his work in lambda calculus and type theory. Life and work [ edit ]
The Y combinator is an implementation of a fixed-point combinator in lambda calculus. Fixed-point combinators may also be easily defined in other functional and imperative languages. The implementation in lambda calculus is more difficult due to limitations in lambda calculus. The fixed-point combinator may be used in a number of different areas: