When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Greedy coloring - Wikipedia

    en.wikipedia.org/wiki/Greedy_coloring

    The right example generalises to 2-colorable graphs with n vertices, where the greedy algorithm expends n/2 colors. In the study of graph coloring problems in mathematics and computer science , a greedy coloring or sequential coloring [ 1 ] is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the ...

  3. Longest-processing-time-first scheduling - Wikipedia

    en.wikipedia.org/wiki/Longest-processing-time...

    During the run of the greedy algorithm, the sum in every bin P i becomes at least 8/3 before the sum of any bin exceeds 4. Proof: Let y be the first input added to some bin P i, which made its sum larger than 4. Before y was added, P i had the smallest sum, which by assumption was smaller than 8/3; this means that y>4/3.

  4. List scheduling - Wikipedia

    en.wikipedia.org/wiki/List_scheduling

    List scheduling is a greedy algorithm for Identical-machines scheduling.The input to this algorithm is a list of jobs that should be executed on a set of m machines. The list is ordered in a fixed order, which can be determined e.g. by the priority of executing the jobs, or by their order of arrival.

  5. Greedy algorithm - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm

    The matching pursuit is an example of a greedy algorithm applied on signal approximation. A greedy algorithm finds the optimal solution to Malfatti's problem of finding three disjoint circles within a given triangle that maximize the total area of the circles; it is conjectured that the same greedy algorithm is optimal for any number of circles.

  6. Grundy number - Wikipedia

    en.wikipedia.org/wiki/Grundy_number

    Zaker (2006) defines a sequence of graphs called t-atoms, with the property that a graph has Grundy number at least t if and only if it contains a t-atom.Each t-atom is formed from an independent set and a (t − 1)-atom, by adding one edge from each vertex of the (t − 1)-atom to a vertex of the independent set, in such a way that each member of the independent set has at least one edge ...

  7. Kruskal's algorithm - Wikipedia

    en.wikipedia.org/wiki/Kruskal's_algorithm

    Kruskal's algorithm [1] finds a minimum spanning forest of an undirected edge-weighted graph.If the graph is connected, it finds a minimum spanning tree.It is a greedy algorithm that in each step adds to the forest the lowest-weight edge that will not form a cycle. [2]

  8. Greedy number partitioning - Wikipedia

    en.wikipedia.org/wiki/Greedy_number_partitioning

    In computer science, greedy number partitioning is a class of greedy algorithms for multiway number partitioning. The input to the algorithm is a set S of numbers, and a parameter k. The required output is a partition of S into k subsets, such that the sums in the subsets are as nearly equal as possible. Greedy algorithms process the numbers ...

  9. Prim's algorithm - Wikipedia

    en.wikipedia.org/wiki/Prim's_algorithm

    The algorithm was developed in 1930 by Czech mathematician VojtÄ›ch Jarník [1] and later rediscovered and republished by computer scientists Robert C. Prim in 1957 [2] and Edsger W. Dijkstra in 1959. [3] Therefore, it is also sometimes called the Jarník's algorithm, [4] Prim–Jarník algorithm, [5] Prim–Dijkstra algorithm [6] or the DJP ...