Ad
related to: plutonium fission images free
Search results
Results From The WOW.Com Content Network
Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main isotopes demonstrated usable as fuel in thermal spectrum nuclear reactors, along with uranium-235 and uranium-233. Plutonium-239 has a half-life of 24,110 years. [1]
Photofission is a process in which a nucleus, after absorbing a gamma ray, undergoes nuclear fission and splits into two or more fragments. The reaction was discovered in 1940 by a small team of engineers and scientists operating the Westinghouse Atom Smasher at the company's Research Laboratories in Forest Hills, Pennsylvania . [ 1 ]
Fission product yields by mass for thermal neutron fission of U-235 and Pu-239 (the two typical of current nuclear power reactors) and U-233 (used in the thorium cycle). This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium.
The first pure-fission bombs needed “tamper”, which was a dense metal surrounding the plutonium pit to keep it inertially confined for a millionth of a second. The tamper comprised two hemispheres that created a ball about as big as a bowling ball, with a soft ball-size pocket in the center where the plutonium pit goes.
Trace amounts of plutonium-238, plutonium-239, plutonium-240, and plutonium-244 can be found in nature. Small traces of plutonium-239, a few parts per trillion , and its decay products are naturally found in some concentrated ores of uranium, [ 54 ] such as the natural nuclear fission reactor in Oklo , Gabon . [ 55 ]
Plutonium-240 has a high rate of spontaneous fission, raising the background neutron radiation of plutonium. Plutonium is graded by proportion of 240 Pu: weapons grade (<7%), fuel grade (7–19%) and reactor grade (>19%). Lower grades are less suited for bombs and thermal reactors but can fuel fast reactors.
There is another source of free neutrons that can spoil a fission explosion. All uranium and plutonium nuclei have a decay mode that results in energetic alpha particles. If the fuel mass contains impurity elements of low atomic number (Z), these charged alphas can penetrate the coulomb barrier of these impurity nuclei and undergo a reaction ...
Plutonium-240 (240 Pu or Pu-240) is an isotope of plutonium formed when plutonium-239 captures a neutron. The detection of its spontaneous fission led to its discovery in 1944 at Los Alamos and had important consequences for the Manhattan Project. [3] 240 Pu undergoes