Search results
Results From The WOW.Com Content Network
Occasionally, small peaks can be seen shouldering the main 1 H NMR peaks. These peaks are not the result of proton-proton coupling, but result from the coupling of 1 H atoms to an adjoining carbon-13 (13 C) atom. These small peaks are known as carbon satellites as they are small and appear around the main 1 H peak i.e. satellite (around) to
Toggle the table of contents. Boric acid (data page) ... Proton NMR: Carbon-13 NMR: Other NMR data MS; Masses of main fragments
Available through Wiley Online Library [3] (John Wiley & Sons), SpecInfo on the Internet NMR is a collection of approximately 440,000 NMR spectra (organized as 13 C, 1 H, 19 F, 31 P, and 29 Si NMR databases). The data are accessed via the Internet using a Java interface and are stored in a server developed jointly with BASF. The software ...
A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK. Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.
Note, if the main 1 H-peak has proton-proton coupling, then each satellite will be a miniature version of the main peak and will also show this 1 H-coupling, e.g. if the main 1 H-peak is a doublet, then the carbon satellites will appear as miniature doublets, i.e. one doublet on either side of the main 1 H-peak. For other NMR atoms (e.g. 19 F ...
Typical 1 H NMR chemical shifts of carbohydrate ring protons are 3–6 ppm (4.5–5.5 ppm for anomeric protons). Typical 13 C NMR chemical shifts of carbohydrate ring carbons are 60–110 ppm In the case of simple mono- and oligosaccharide molecules, all proton signals are typically separated from one another (usually at 500 MHz or better NMR ...
The exchangeable and non-exchangeable protons are usually assigned to their specific peaks as two independent groups. For exchangeable protons, which are for the most part the protons involved in base pairing, NOESY can be used to find through-space correlations between on neighboring bases, allowing an entire duplex molecule to be assigned through sequential walking.
The 1 H NMR spectra were recorded at a resonance frequency of 400 MHz with a resolution of 0.0625 Hz or at 90 MHz with a resolution of 0.125 Hz. The spectral acquisition was carried out using a flip angle of 22.5 – 30.0 degrees and a pulse repetition time of 30 seconds. [ 4 ]