Search results
Results From The WOW.Com Content Network
k3po4 Tripotassium phosphate has few industrial applications, however it is commonly used as a base in laboratory-scale organic chemistry. Being insoluble in organic solvents, it is an easily removed proton acceptor in organic synthesis .
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
Substance Formula 0 °C 10 °C 20 °C 30 °C 40 °C 50 °C 60 °C 70 °C 80 °C 90 °C 100 °C Barium acetate: Ba(C 2 H 3 O 2) 2: 58.8: 62: 72: 75: 78.5: 77: 75
Monopotassium phosphate Dipotassium phosphate Tripotassium phosphate. Potassium phosphate is a generic term for the salts of potassium and phosphate ions including: [1] ...
Many phosphates are soluble in water at standard temperature and pressure. The sodium, potassium, rubidium, caesium, and ammonium phosphates are all water-soluble. Most other phosphates are only slightly soluble or are insoluble in water. As a rule, the hydrogen and dihydrogen phosphates are slightly more soluble than the corresponding phosphates.
The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two. [1] Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
Monopotassium phosphate can exist in several polymorphs.At room temperature it forms paraelectric crystals with tetragonal symmetry. Upon cooling to −150 °C (−238 °F) it transforms to a ferroelectric phase of orthorhombic symmetry, and the transition temperature shifts up to −50 °C (−58 °F) when hydrogen is replaced by deuterium. [8]