Search results
Results From The WOW.Com Content Network
Neutron radiation is a form of ionizing radiation that presents as free neutrons.Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides—which, in turn, may trigger further neutron radiation.
237 Np is the product of alpha decay of 241 Am, which is produced through neutron irradiation of uranium-238. [28] Heavier isotopes of neptunium decay quickly, and lighter isotopes of neptunium cannot be produced by neutron capture, so chemical separation of neptunium from cooled spent nuclear fuel gives nearly pure 237 Np. [28]
It only exists naturally on earth in very small amounts and its short half-life means useful quantities have to be produced synthetically. Phosphorus-32 can be generated synthetically by irradiation of sulfur-32 with moderately fast neutrons as shown in this nuclear equation:
The neutron has a mean-square radius of about 0.8 × 10 −15 m, or 0.8 fm, [20] and it is a spin-½ fermion. [21] The neutron has no measurable electric charge. With its positive electric charge, the proton is directly influenced by electric fields, whereas the neutron is unaffected by electric fields. [22]
Neutron activation is the process in which neutron radiation induces radioactivity in materials, and occurs when atomic nuclei capture free neutrons, becoming heavier and entering excited states. The excited nucleus decays immediately by emitting gamma rays , or particles such as beta particles , alpha particles , fission products , and ...
Decay: Outside the nucleus, free neutrons are unstable and have a mean lifetime of 885.7 ± 0.8 s (about 14 minutes, 46 seconds). [1] Free neutrons decay by emission of an electron and an electron antineutrino to become a proton, a process known as beta decay: [2] n 0 → p + + e − + ν e. Although the p + and e −
The radionuclide used is americium-241, which is created by bombarding plutonium with neutrons in a nuclear reactor. It decays by emitting alpha particles and gamma radiation to become neptunium-237. Smoke detectors use a very small quantity of 241 Am (about 0.29 micrograms per smoke detector) in the form of americium dioxide.
Some early evidence for nuclear fission was the formation of a short-lived radioisotope of barium which was isolated from neutron irradiated uranium (139 Ba, with a half-life of 83 minutes and 140 Ba, with a half-life of 12.8 days, are major fission products of uranium).