Search results
Results From The WOW.Com Content Network
However, the speed of sound varies from substance to substance: typically, sound travels most slowly in gases, faster in liquids, and fastest in solids. For example, while sound travels at 343 m/s in air, it travels at 1481 m/s in water (almost 4.3 times as fast) and at 5120 m/s in iron (almost 15 times as fast).
The uncertainty principle implies that individual photons may travel for short distances at speeds somewhat faster (or slower) than c, even in vacuum; this possibility must be taken into account when enumerating Feynman diagrams for a particle interaction. [24] However, it was shown in 2011 that a single photon may not travel faster than c. [25]
The sound wave front travels faster near the ground, so the sound is refracted upward, away from listeners on the ground, creating an acoustic shadow at some distance from the source. [4] The opposite effect happens when the ground is covered with snow, or in the morning over water, when the sound speed gradient is positive.
When sound is moving through a medium that does not have constant physical properties, it may be refracted (either dispersed or focused). [5] Spherical compression (longitudinal) waves. The mechanical vibrations that can be interpreted as sound can travel through all forms of matter: gases, liquids, solids, and plasmas.
Output of a computer model of underwater acoustic propagation in a simplified ocean environment. A seafloor map produced by multibeam sonar. Underwater acoustics (also known as hydroacoustics) is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries.
The sound of a sonic boom depends largely on the distance between the observer and the aircraft shape producing the sonic boom. A sonic boom is usually heard as a deep double "boom" as the aircraft is usually some distance away. The sound is much like that of mortar bombs, commonly used in firework displays. It is a common misconception that ...
Upgrade to a faster, more secure version of a supported browser. It's free and it only takes a few moments:
The speed of sound in any chemical element in the fluid phase has one temperature-dependent value. In the solid phase, different types of sound wave may be propagated, each with its own speed: among these types of wave are longitudinal (as in fluids), transversal, and (along a surface or plate) extensional. [1]