Ad
related to: practical uses of radioactivity in chemistry
Search results
Results From The WOW.Com Content Network
Radiolabeling is not necessary for some applications. For some purposes, soluble ionic salts can be used directly without further modification (e.g., gallium-67, gallium-68, and radioiodine isotopes). These uses rely on the chemical and biological properties of the radioisotope itself, to localize it within the organism or biological system.
The field of radioanalytical chemistry was originally developed by Marie Curie with contributions by Ernest Rutherford and Frederick Soddy. They developed chemical separation and radiation measurement techniques on terrestrial radioactive substances. During the twenty years that followed 1897 the concepts of radionuclides was born. [1]
Radiochemistry is the chemistry of radioactive materials, where radioactive isotopes of elements are used to study the properties and chemical reactions of non-radioactive isotopes (often within radiochemistry the absence of radioactivity leads to a substance being described as being inactive as the isotopes are stable).
Radiochemistry is the chemistry of radioactive materials, in which radioactive isotopes of elements are used to study the properties and chemical reactions of non-radioactive isotopes (often within radiochemistry the absence of radioactivity leads to a substance being described as being inactive as the isotopes are stable).
Radiopharmacology is radiochemistry applied to medicine and thus the pharmacology of radiopharmaceuticals (medicinal radiocompounds, that is, pharmaceutical drugs that are radioactive). Radiopharmaceuticals are used in the field of nuclear medicine as radioactive tracers in medical imaging and in therapy for many diseases (for example ...
The radioactive decay can produce a stable nuclide or will sometimes produce a new unstable radionuclide which may undergo further decay. Radioactive decay is a random process at the level of single atoms: it is impossible to predict when one particular atom will decay.
With a short half-life of 8 days, this radioisotope is not of practical use in radioactive sources in industrial radiography or sensing. However, since iodine is a component of biological molecules such as thyroid hormones, iodine-131 is of great importance in nuclear medicine , and in medical and biological research as a radioactive tracer .
A radioactive tracer, radiotracer, or radioactive label is a synthetic derivative of a natural compound in which one or more atoms have been replaced by a radionuclide (a radioactive atom). By virtue of its radioactive decay , it can be used to explore the mechanism of chemical reactions by tracing the path that the radioisotope follows from ...