Search results
Results From The WOW.Com Content Network
Flavin mononucleotide (FMN), or riboflavin-5′-phosphate, is a biomolecule produced from riboflavin (vitamin B 2) by the enzyme riboflavin kinase and functions as the prosthetic group of various oxidoreductases, including NADH dehydrogenase, as well as a cofactor in biological blue-light photo receptors. [1]
There are 18 key atoms in isoalloxazine that make up its characteristic three-ring structure. The R-group varies and differentiates various flavins. Riboflavin. Flavins (from Latin flavus, "yellow") refers generally to the class of organic compounds containing the tricyclic heterocycle isoalloxazine or its isomer alloxazine, and derivatives thereof.
The flavin-containing monooxygenase (FMO) protein family specializes in the oxidation of xeno-substrates in order to facilitate the excretion of these compounds from living organisms. [1] These enzymes can oxidize a wide array of heteroatoms , particularly soft nucleophiles , such as amines , sulfides , and phosphites .
The number of flavin-dependent protein encoded genes in the genome (the flavoproteome) is species dependent and can range from 0.1% - 3.5%, with humans having 90 flavoprotein encoded genes. [16] FAD is the more complex and abundant form of flavin and is reported to bind to 75% of the total flavoproteome [16] and 84% of human encoded ...
90 flavoproteins are encoded in the human genome; about 84% require FAD and around 16% require FMN, whereas 5 proteins require both. [4] Flavoproteins are mainly located in the mitochondria . [ 4 ] Of all flavoproteins, 90% perform redox reactions and the other 10% are transferases , lyases , isomerases , ligases .
An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.
In enzymology, an FMN reductase (EC 1.5.1.29) is an enzyme that catalyzes the chemical reaction FMNH 2 + NAD(P)+ ⇌ {\displaystyle \rightleftharpoons } FMN + NAD(P)H + H + The 3 substrates of this enzyme are FMNH2 , NAD + , and NADP + , whereas its 4 products are FMN , NADH , NADPH , and H + .
The oxidation states are also maintained in articles of the elements (of course), and systematically in the table {{Infobox element/symbol-to-oxidation-state}} See also [ edit ]