Search results
Results From The WOW.Com Content Network
The redox reactions of nicotinamide adenine dinucleotide. The compound accepts or donates the equivalent of H −. [6] Such reactions (summarized in formula below) involve the removal of two hydrogen atoms from the reactant (R), in the form of a hydride ion (H −), and a proton (H +).
Nicotinamide adenine dinucleotide phosphate, abbreviated NADP [1] [2] or, in older notation, TPN (triphosphopyridine nucleotide), is a cofactor used in anabolic reactions, such as the Calvin cycle and lipid and nucleic acid syntheses, which require NADPH as a reducing agent ('hydrogen source').
NAD + and NADP + are cofactors in a wide variety of enzymatic oxidation-reduction reactions, most notably glycolysis, the citric acid cycle, and the electron transport chain. [32] If humans ingest nicotinamide, it will likely undergo a series of reactions that transform it into NAD, which can then undergo a transformation to form NADP + .
NADH dehydrogenase is an enzyme that converts nicotinamide adenine dinucleotide (NAD) from its reduced form (NADH) to its oxidized form (NAD +).Members of the NADH dehydrogenase family and analogues are commonly systematically named using the format NADH:acceptor oxidoreductase.
Nicotinamide Adenine Dinucleotide. Dehydrogenase enzymes transfer electrons from the substrate to an electron carrier; what carrier is used depends on the reaction taking place. Common electron acceptors used by this subclass are NAD +, FAD, and NADP +. Electron carriers are reduced in this process and considered oxidizers of the substrate.
An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.
In heterogeneous electron transfer, an electron moves between a chemical species present in solution and the surface of a solid such as a semi-conducting material or an electrode. Theories addressing heterogeneous electron transfer have applications in electrochemistry and the design of solar cells.
Nicotinamide adenine dinucleotide (NAD), along with its phosphorylated variant nicotinamide adenine dinucleotide phosphate (NADP), are utilized in transfer reactions within DNA repair and calcium mobilization. NAD also plays a critical role in human metabolism, acting as a coenzyme in both glycolysis and the Krebs cycle. [23]