When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    Thus, the ratio of the kinetic energy to the absolute temperature of an ideal monatomic gas can be calculated easily: per mole: 12.47 J/K; per molecule: 20.7 yJ/K = 129 μeV/K; At standard temperature (273.15 K), the kinetic energy can also be obtained: per mole: 3406 J; per molecule: 5.65 zJ = 35.2 meV.

  3. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    The total kinetic energy of a system depends on the inertial frame of reference: it is the sum of the total kinetic energy in a center of momentum frame and the kinetic energy the total mass would have if it were concentrated in the center of mass.

  4. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    In other words, its potential energy is zero. Hence, all the energy possessed by the gas is the kinetic energy of the molecules, or atoms, of the gas. = This corresponds to the kinetic energy of n moles of a monoatomic gas having 3 degrees of freedom; x, y, z. The table here below gives this relationship for different amounts of a monoatomic gas.

  5. Kerma (physics) - Wikipedia

    en.wikipedia.org/wiki/Kerma_(physics)

    In radiation physics, kerma is an acronym for "kinetic energy released per unit mass" (alternately, "kinetic energy released in matter", [1] "kinetic energy released in material", [2] or "kinetic energy released in materials" [3]), defined as the sum of the initial kinetic energies of all the charged particles liberated by uncharged ionizing radiation (i.e., indirectly ionizing radiation such ...

  6. Virial theorem - Wikipedia

    en.wikipedia.org/wiki/Virial_theorem

    The significance of the virial theorem is that it allows the average total kinetic energy to be calculated even for very complicated systems that defy an exact solution, such as those considered in statistical mechanics; this average total kinetic energy is related to the temperature of the system by the equipartition theorem.

  7. Elastic collision - Wikipedia

    en.wikipedia.org/wiki/Elastic_collision

    On average, two atoms rebound from each other with the same kinetic energy as before a collision. Five atoms are colored red so their paths of motion are easier to see. In physics , an elastic collision is an encounter ( collision ) between two bodies in which the total kinetic energy of the two bodies remains the same.

  8. Equipartition theorem - Wikipedia

    en.wikipedia.org/wiki/Equipartition_theorem

    The (Newtonian) kinetic energy of a particle of mass m, velocity v is given by = | | = (+ +), where v x, v y and v z are the Cartesian components of the velocity v.Here, H is short for Hamiltonian, and used henceforth as a symbol for energy because the Hamiltonian formalism plays a central role in the most general form of the equipartition theorem.

  9. Joule expansion - Wikipedia

    en.wikipedia.org/wiki/Joule_expansion

    Internal energy consists of internal kinetic energy (due to the motion of the molecules) and internal potential energy (due to intermolecular forces). When the molecular motion is random, temperature is the measure of the internal kinetic energy. In this case, the internal kinetic energy is called heat.