Search results
Results From The WOW.Com Content Network
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions: = = + + + + +. The first n {\displaystyle n} terms of the series sum to approximately ln n + γ {\displaystyle \ln n+\gamma } , where ln {\displaystyle \ln } is the natural logarithm and γ ≈ 0.577 {\displaystyle \gamma \approx 0.577 ...
The infinite sequence of additions expressed by a series cannot be explicitly performed in sequence in a finite amount of time. However, if the terms and their finite sums belong to a set that has limits, it may be possible to assign a value to a series, called the sum of the series.
The geometric series on the real line. In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as
Fix a complex number .If = for and () =, then () = ⌊ ⌋ and the formula becomes = ⌊ ⌋ = ⌊ ⌋ + ⌊ ⌋ +. If () >, then the limit as exists and yields the ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The sum of the reciprocals of the numbers in any sum-free sequence is less than 2.8570 . The sum of the reciprocals of the heptagonal numbers converges to a known value that is not only irrational but also transcendental, and for which there exists a complicated formula.