When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    In mathematical analysis, the Dirac delta function (or δ distribution), also known as the unit impulse, [1] is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. [2] [3] [4] Thus it can be represented heuristically as

  3. Duhamel's integral - Wikipedia

    en.wikipedia.org/wiki/Duhamel's_integral

    If a system initially rests at its equilibrium position, from where it is acted upon by a unit-impulse at the instance t=0, i.e., p(t) in the equation above is a Dirac delta function δ(t), () = | = =, then by solving the differential equation one can get a fundamental solution (known as a unit-impulse response function)

  4. Singularity function - Wikipedia

    en.wikipedia.org/wiki/Singularity_function

    The function () is the Heaviside step function: H(x) = 0 for x < 0 and H(x) = 1 for x > 0. The value of H (0) will depend upon the particular convention chosen for the Heaviside step function. Note that this will only be an issue for n = 0 since the functions contain a multiplicative factor of x − a for n > 0 .

  5. Dirac comb - Wikipedia

    en.wikipedia.org/wiki/Dirac_comb

    The graph of the Dirac comb function is an infinite series of Dirac delta functions spaced at intervals of T. In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula ⁡ := = for some given period . [1]

  6. Heaviside step function - Wikipedia

    en.wikipedia.org/wiki/Heaviside_step_function

    Therefore the "step function" exhibits ramp-like behavior over the domain of [−1, 1], and cannot authentically be a step function, using the half-maximum convention. Unlike the continuous case, the definition of H[0] is significant. The discrete-time unit impulse is the first difference of the discrete-time step

  7. Impulse response - Wikipedia

    en.wikipedia.org/wiki/Impulse_response

    The impulse response of a linear transformation is the image of Dirac's delta function under the transformation, analogous to the fundamental solution of a partial differential operator. It is usually easier to analyze systems using transfer functions as opposed to impulse responses. The transfer function is the Laplace transform of the impulse ...

  8. Unit doublet - Wikipedia

    en.wikipedia.org/wiki/Unit_doublet

    Approximation of a unit doublet with two rectangles of width k as k goes to zero. In mathematics, the unit doublet is the derivative of the Dirac delta function.It can be used to differentiate signals in electrical engineering: [1] If u 1 is the unit doublet, then

  9. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    A causal system is a system where the impulse response h(t) is zero for all time t prior to t = 0. In general, the region of convergence for causal systems is not the same as that of anticausal systems. The following functions and variables are used in the table below: δ represents the Dirac delta function. u(t) represents the Heaviside step ...