When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    Euler's identity therefore states that the limit, as n approaches infinity, of (+) is equal to −1. This limit is illustrated in the animation to the right. Euler's formula for a general angle. Euler's identity is a special case of Euler's formula, which states that for any real number x,

  3. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.

  4. File:E-to-the-i-pi.svg - Wikipedia

    en.wikipedia.org/wiki/File:E-to-the-i-pi.svg

    This mathematical term forms part of an identity, a special case of Euler's formula, written = ⁡ + ⁡ (). Setting x {\displaystyle x} to a value of π {\displaystyle \pi } , as with the above term, Euler's formula reduces to a famous equation relating seven important mathematical symbols (and none that are unimportant!), namely e i π + 1 ...

  5. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    This last non-simple continued fraction (sequence A110185 in the OEIS), equivalent to = [;,,,,,...], has a quicker convergence rate compared to Euler's continued fraction formula [clarification needed] and is a special case of a general formula for the exponential function:

  6. Contributions of Leonhard Euler to mathematics - Wikipedia

    en.wikipedia.org/wiki/Contributions_of_Leonhard...

    Euler's identity is a special case of this: + =. This identity is particularly remarkable as it involves e, , i, 1, and 0, arguably the five most important constants in mathematics, as well as the four fundamental arithmetic operators: addition, multiplication, exponentiation, and equality.

  7. Euler function - Wikipedia

    en.wikipedia.org/wiki/Euler_function

    The Euler function may be expressed as a q-Pochhammer symbol: = (;). The logarithm of the Euler function is the sum of the logarithms in the product expression, each of which may be expanded about q = 0, yielding

  8. Proof that e is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_e_is_irrational

    Euler wrote the first proof of the fact that e is irrational in 1737 (but the text was only published seven years later). [1] [2] [3] He computed the representation of e as a simple continued fraction, which is

  9. Euler's four-square identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_four-square_identity

    Comment: The proof of Euler's four-square identity is by simple algebraic evaluation. Quaternions derive from the four-square identity, which can be written as the product of two inner products of 4-dimensional vectors, yielding again an inner product of 4-dimensional vectors: (a·a)(b·b) = (a×b)·(a×b).