When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Discrete logarithm - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm

    For any number a in this list, one can compute log 10 a. For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents.

  3. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...

  4. Discrete logarithm records - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm_records

    The discrete logarithm part of the computation took approximately 3100 core-years, using Intel Xeon Gold 6130 CPUs as a reference (2.1 GHz). The researchers estimate that improvements in the algorithms and software made this computation three times faster than would be expected from previous records after accounting for improvements in hardware.

  5. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    The discrete logarithm is the integer n solving the equation =, where x is an element of the group. Carrying out the exponentiation can be done efficiently, but the discrete logarithm is believed to be very hard to calculate in some groups.

  6. Category:Logarithms - Wikipedia

    en.wikipedia.org/wiki/Category:Logarithms

    Log-likelihood; List of logarithmic identities; Logarithm of a matrix; Logarithm table; Logarithmic addition; Logarithmic convolution; Logarithmic decrement; Logarithmic differentiation; Logarithmic distribution; Logarithmic growth; Logarithmic number system; Logarithmic Sobolev inequalities; Logarithmus; Logarithmus binaris; Logarithmus ...

  7. Pollard's kangaroo algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard's_kangaroo_algorithm

    In computational number theory and computational algebra, Pollard's kangaroo algorithm (also Pollard's lambda algorithm, see Naming below) is an algorithm for solving the discrete logarithm problem. The algorithm was introduced in 1978 by the number theorist John M. Pollard , in the same paper as his better-known Pollard's rho algorithm for ...

  8. Index calculus algorithm - Wikipedia

    en.wikipedia.org/wiki/Index_calculus_algorithm

    The algorithm is performed in three stages. The first two stages depend only on the generator g and prime modulus q, and find the discrete logarithms of a factor base of r small primes. The third stage finds the discrete log of the desired number h in terms of the discrete logs of the factor base.

  9. Hidden subgroup problem - Wikipedia

    en.wikipedia.org/wiki/Hidden_subgroup_problem

    The hidden subgroup problem is especially important in the theory of quantum computing for the following reasons.. Shor's algorithm for factoring and for finding discrete logarithms (as well as several of its extensions) relies on the ability of quantum computers to solve the HSP for finite abelian groups.