Search results
Results From The WOW.Com Content Network
A simple gravity pendulum [1] is an idealized mathematical model of a real pendulum. [2] [3] [4] It is a weight (or bob) on the end of a massless cord suspended from a pivot, without friction. Since in the model there is no frictional energy loss, when given an initial displacement it swings back and forth with a constant amplitude. The model ...
"Simple gravity pendulum" model assumes no friction or air resistance. A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. [1] When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position.
A Kater's pendulum is a reversible free swinging pendulum invented by British physicist and army captain Henry Kater in 1817 (made public on 29 January 1818), [1] for use as a gravimeter instrument to measure the local acceleration of gravity.
The Foucault pendulum or Foucault's pendulum is a simple device named after French physicist Léon Foucault, conceived as an experiment to demonstrate the Earth's rotation. If a long and heavy pendulum suspended from the high roof above a circular area is monitored over an extended period of time, its plane of oscillation appears to change ...
Horologium Oscillatorium: Sive de Motu Pendulorum ad Horologia Aptato Demonstrationes Geometricae (English: The Pendulum Clock: or Geometrical Demonstrations Concerning the Motion of Pendula as Applied to Clocks) is a book published by Dutch mathematician and physicist Christiaan Huygens in 1673 and his major work on pendula and horology.
Simple pendulum. Since the rod is rigid, the position of the bob is constrained according to the equation f(x, y) = 0, the constraint force C is the tension in the rod. Again the non-constraint force N in this case is gravity. Newton's laws and the concept of forces are the usual starting point for teaching about mechanical systems. [5]
A simple pendulum exhibits approximately simple harmonic motion under the conditions of no damping and small amplitude. Assuming no damping, the differential equation governing a simple pendulum of length l {\displaystyle l} , where g {\displaystyle g} is the local acceleration of gravity , is d 2 θ d t 2 + g l sin θ = 0. {\displaystyle ...
Rayleigh–Lorentz pendulum (or Lorentz pendulum) is a simple pendulum, but subjected to a slowly varying frequency due to an external action (frequency is varied by varying the pendulum length), named after Lord Rayleigh and Hendrik Lorentz. [1] This problem formed the basis for the concept of adiabatic invariants in mechanics. On account of ...