Search results
Results From The WOW.Com Content Network
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
One common correlation function is the radial distribution function which is seen often in statistical mechanics and fluid mechanics. The correlation function can be calculated in exactly solvable models (one-dimensional Bose gas, spin chains, Hubbard model) by means of Quantum inverse scattering method and Bethe ansatz. In an isotropic XY ...
The correlation matrix (also called second moment) of an random vector is an matrix whose (i,j) th element is the correlation between the i th and the j th random variables.
The cross-correlation matrix of two random vectors is a matrix containing as elements the cross-correlations of all pairs of elements of the random vectors. The cross-correlation matrix is used in various digital signal processing algorithms.
where = [] and = [] are vectors containing the expected values of and .The vectors and need not have the same dimension, and either might be a scalar value.. The cross-covariance matrix is the matrix whose (,) entry is the covariance
In statistics, canonical-correlation analysis (CCA), also called canonical variates analysis, is a way of inferring information from cross-covariance matrices.If we have two vectors X = (X 1, ..., X n) and Y = (Y 1, ..., Y m) of random variables, and there are correlations among the variables, then canonical-correlation analysis will find linear combinations of X and Y that have a maximum ...
A correlation function is a function that gives the statistical correlation between random variables, contingent on the spatial or temporal distance between those variables. [1] If one considers the correlation function between random variables representing the same quantity measured at two different points, then this is often referred to as an ...
The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive-definite matrices, the SCM is a biased and inefficient estimator. [1]