Search results
Results From The WOW.Com Content Network
In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the implication P → Q, the converse is Q → P. For the categorical proposition All S are P, the converse is All P are S. Either way, the truth of the converse is generally independent from that of ...
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for ...
(the symbol may also indicate the domain and codomain of a function; see table of mathematical symbols). ⊃ {\displaystyle \supset } may mean the same as ⇒ {\displaystyle \Rightarrow } (the symbol may also mean superset ).
Conversion (the converse), "If I wear my coat, then it is raining ." The converse is actually the contrapositive of the inverse, and so always has the same truth value as the inverse (which as stated earlier does not always share the same truth value as that of the original proposition).
The following table lists many specialized symbols commonly used in modern mathematics, ordered by their introduction date. The table can also be ordered alphabetically by clicking on the relevant header title.
Algebraic geometry occupied a central place in the mathematics of the last century. The deepest results of Abel, Riemann, Weierstrass, many of the most important papers of Klein and Poincare belong to this domain. At the end of the last and the beginning of the present century the attitude towards algebraic geometry changed abruptly. ...
In the monoid of binary endorelations on a set (with the binary operation on relations being the composition of relations), the converse relation does not satisfy the definition of an inverse from group theory, that is, if is an arbitrary relation on , then does not equal the identity relation on in general.
The expressions "A includes x" and "A contains x" are also used to mean set membership, although some authors use them to mean instead "x is a subset of A". [2] Logician George Boolos strongly urged that "contains" be used for membership only, and "includes" for the subset relation only. [3] For the relation ∈ , the converse relation ∈ T ...