Search results
Results From The WOW.Com Content Network
Eventually, as 8-, 16-, and 32-bit (and later 64-bit) computers began to replace 12-, 18-, and 36-bit computers as the norm, it became common to use an 8-bit byte to store each character in memory, providing an opportunity for extended, 8-bit relatives of ASCII. In most cases these developed as true extensions of ASCII, leaving the original ...
Punched tape with the word "Wikipedia" encoded in ASCII.Presence and absence of a hole represents 1 and 0, respectively; for example, W is encoded as 1010111.. Character encoding is the process of assigning numbers to graphical characters, especially the written characters of human language, allowing them to be stored, transmitted, and transformed using computers. [1]
It was designed for backward compatibility with ASCII: the first 128 characters of Unicode, which correspond one-to-one with ASCII, are encoded using a single byte with the same binary value as ASCII, so that a UTF-8-encoded file using only those characters is identical to an ASCII file.
In computing, a code page is a character encoding and as such it is a specific association of a set of printable characters and control characters with unique numbers. Typically each number represents the binary value in a single byte. (In some contexts these terms are used more precisely; see Character encoding § Terminology.)
The ASCII text-encoding standard uses 7 bits to encode characters. With this it is possible to encode 128 (i.e. 2 7) unique values (0–127) to represent the alphabetic, numeric, and punctuation characters commonly used in English, plus a selection of Control characters which do not represent printable characters.
The interpretation of the control key with non-ASCII ("foreign") keys also varies between systems. Control characters are often rendered into a printable form known as caret notation by printing a caret (^) and then the ASCII character that has a value of the control character plus 64. Control characters generated using letter keys are thus ...
A wide character refers to the size of the datatype in memory. It does not state how each value in a character set is defined. Those values are instead defined using character sets, with UCS and Unicode simply being two common character sets that encode more characters than an 8-bit wide numeric value (255 total) would allow.
Unicode has no separate characters for hexadecimal values. A consequence is, that when using regular characters it is not possible to determine whether hexadecimal value is intended, or even whether a value is intended at all. That should be determined at a higher level, e.g. by prepending 0x to a hexadecimal