Search results
Results From The WOW.Com Content Network
2-dimensional section of Reeb foliation 3-dimensional model of Reeb foliation. In mathematics (differential geometry), a foliation is an equivalence relation on an n-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension p, modeled on the decomposition of the real coordinate space R n into the cosets x + R p of the standardly embedded ...
A 3-torus in this sense is an example of a 3-dimensional compact ... A taut foliation is a codimension 1 foliation of a 3-manifold with the property that there is a ...
In other words, every point admits a foliation chart, i.e. the distribution is tangent to the leaves of a foliation. Moreover, this local characterisation coincides with the definition of integrability for a G {\displaystyle G} -structures , when G {\displaystyle G} is the group of real invertible upper-triangular block matrices (with ( n × n ...
In mathematics, the Reeb foliation is a particular foliation of the 3-sphere, introduced by the French mathematician Georges Reeb (1920–1993). It is based on dividing the sphere into two solid tori , along a 2- torus : see Clifford torus .
Generally the axial plane foliation or cleavage of a fold is created during folding, and the number convention should match. For example, an F 2 fold should have an S 2 axial foliation. Deformations are numbered according to their order of formation with the letter D denoting a deformation event. For example, D 1, D 2, D 3. Folds and foliations ...
A p-dimensional, class C r foliation of an n-dimensional manifold M is a decomposition of M into a union of disjoint connected submanifolds {L α} α∈A, called the leaves of the foliation, with the following property: Every point in M has a neighborhood U and a system of local, class C r coordinates x=(x 1, ⋅⋅⋅, x n) : U→R n such that ...
Intersection lineations are linear structures formed by the intersection of any two surfaces in a three-dimensional space. The trace of bedding on an intersecting foliation plane commonly appears as colour stripes generally parallel to local fold's hinges. Intersection lineations can also be due to the intersection of two foliations.
(Note that the foliation need not be regular; i.e. the leaves of the foliation might not be embedded submanifolds.) An integrability condition is a condition on the α i {\displaystyle \alpha _{i}} to guarantee that there will be integral submanifolds of sufficiently high dimension.