Search results
Results From The WOW.Com Content Network
The dose values are divided by the maximum dose, referred to as d max, yielding a plot in terms of percentage of the maximum dose. Dose measurements are generally made in water or "water equivalent" plastic with an ionization chamber , since water is very similar to human tissue with regard to radiation scattering and absorption.
Consequently, instruments measuring dose rate require the use of an energy compensated Geiger–Müller tube, so that the dose displayed relates to the counts detected. [4] The electronics will apply known factors to make this conversion, which is specific to each instrument and is determined by design and calibration.
It is often indicated in micrograys per hour (μGy/h) [1] or as an equivalent dose rate Ḣ T in rems per hour (rem/hr) or sieverts per hour (Sv/h). [ 2 ] [ 3 ] Dose and dose rate are used to measure different quantities [ 1 ] in the same way that distance and speed are used to measure different quantities.
The public information dose chart of the USA Department of Energy, shown here on the right, applies to USA regulation, which is based on ICRP recommendations. Note that examples in lines 1 to 4 have a scale of dose rate (radiation per unit time), whilst 5 and 6 have a scale of total accumulated dose.
The rad is a unit of absorbed radiation dose, defined as 1 rad = 0.01 Gy = 0.01 J/kg. [1] It was originally defined in CGS units in 1953 as the dose causing 100 ergs of energy to be absorbed by one gram of matter.
It is worn by the person being monitored when used as a personal dosimeter, and is a record of the radiation dose received. Modern electronic personal dosimeters can give a continuous readout of cumulative dose and current dose rate, and can warn the wearer with an audible alarm when a specified dose rate or a cumulative dose is exceeded. Other ...
Absorbed dose is a dose quantity which is the measure of the energy deposited in matter by ionizing radiation per unit mass. Absorbed dose is used in the calculation of dose uptake in living tissue in both radiation protection (reduction of harmful effects), and radiology (potential beneficial effects, for example in cancer treatment).
Committed equivalent dose, H T (t) is the time integral of the equivalent dose rate in a particular tissue or organ that will be received by an individual following intake of radioactive material into the body by a Reference Person, where s is the integration time in years. [13]