Search results
Results From The WOW.Com Content Network
Residuals can be tested for homoscedasticity using the Breusch–Pagan test, [20] which performs an auxiliary regression of the squared residuals on the independent variables. From this auxiliary regression, the explained sum of squares is retained, divided by two, and then becomes the test statistic for a chi-squared distribution with the ...
Thus to compare residuals at different inputs, one needs to adjust the residuals by the expected variability of residuals, which is called studentizing. This is particularly important in the case of detecting outliers, where the case in question is somehow different from the others in a dataset. For example, a large residual may be expected in ...
Residual plots plot the difference between the actual data and the model's predictions: correlations in the residual plots may indicate a flaw in the model. Cross validation is a method of model validation that iteratively refits the model, each time leaving out just a small sample and comparing whether the samples left out are predicted by the ...
Residuals = residuals from the full model, ^ = regression coefficient from the i-th independent variable in the full model, X i = the i-th independent variable. Partial residual plots are widely discussed in the regression diagnostics literature (e.g., see the References section below).
For example, log scales may give a height of 1 for a value of 10 in the data and a height of 6 for a value of 1,000,000 (10 6) in the data. Log scales and variants are commonly used, for instance, for the volcanic explosivity index, the Richter scale for earthquakes, the magnitude of stars, and the pH of acidic and alkaline solutions.
An illustrative plot of a fit to data (green curve in top panel, data in red) plus a plot of residuals: red points in bottom plot. Dashed curve in bottom panel is a straight line fit to the residuals. If the functional form is correct then there should be little or no trend to the residuals - as seen here.
The residuals from the least squares linear fit to this plot are identical to the residuals from the least squares fit of the original model (Y against all the independent variables including Xi). The influences of individual data values on the estimation of a coefficient are easy to see in this plot.
The usual estimate of σ 2 is the internally studentized residual ^ = = ^. where m is the number of parameters in the model (2 in our example).. But if the i th case is suspected of being improbably large, then it would also not be normally distributed.