Search results
Results From The WOW.Com Content Network
In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.
The closest band above the band gap is called the conduction band, and the closest band beneath the band gap is called the valence band. The name "valence band" was coined by analogy to chemistry, since in semiconductors (and insulators) the valence band is built out of the valence orbitals.
The carrier density is important for semiconductors, where it is an important quantity for the process of chemical doping.Using band theory, the electron density, is number of electrons per unit volume in the conduction band.
In undoped semiconductors the Fermi level lies in the middle of a forbidden band or band gap between two allowed bands called the valence band and the conduction band. The valence band, immediately below the forbidden band, is normally very nearly completely occupied. The conduction band, above the Fermi level, is normally nearly completely empty.
Based on the energy eigenvalues, conduction band are the high energy states (E>0) while valence bands are the low energy states (E<0). In some materials, for example, in graphene and zigzag graphene quantum dot, there exists the energy states having energy eigenvalues exactly equal to zero (E=0) besides the conduction and valence bands. These ...
The term "band gap" refers to the energy difference between the top of the valence band and the bottom of the conduction band. Electrons are able to jump from one band to another. However, in order for a valence band electron to be promoted to the conduction band, it requires a specific minimum amount of energy for the transition.
In a multi-band material, ζ may even take on multiple values in a single location. For example, in a piece of aluminum there are two conduction bands crossing the Fermi level (even more bands in other materials); [10] each band has a different edge energy, ϵ C, and a different ζ.
A quasi Fermi level is a term used in quantum mechanics and especially in solid state physics for the Fermi level (chemical potential of electrons) that describes the population of electrons separately in the conduction band and valence band, when their populations are displaced from equilibrium.