When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Reservoir sampling - Wikipedia

    en.wikipedia.org/wiki/Reservoir_sampling

    Reservoir sampling is a family of randomized algorithms for choosing a simple random sample, without replacement, of k items from a population of unknown size n in a single pass over the items. The size of the population n is not known to the algorithm and is typically too large for all n items to fit into main memory .

  3. Simple random sample - Wikipedia

    en.wikipedia.org/wiki/Simple_random_sample

    Although simple random sampling can be conducted with replacement instead, this is less common and would normally be described more fully as simple random sampling with replacement. Sampling done without replacement is no longer independent, but still satisfies exchangeability, hence most results of mathematical statistics still hold. Further ...

  4. Negative hypergeometric distribution - Wikipedia

    en.wikipedia.org/wiki/Negative_hypergeometric...

    In probability theory and statistics, the negative hypergeometric distribution describes probabilities for when sampling from a finite population without replacement in which each sample can be classified into two mutually exclusive categories like Pass/Fail or Employed/Unemployed. As random selections are made from the population, each ...

  5. Hypergeometric distribution - Wikipedia

    en.wikipedia.org/wiki/Hypergeometric_distribution

    In probability theory and statistics, the hypergeometric distribution is a discrete probability distribution that describes the probability of successes (random draws for which the object drawn has a specified feature) in draws, without replacement, from a finite population of size that contains exactly objects with that feature, wherein each draw is either a success or a failure.

  6. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    A random sample can be thought of as a set of objects that are chosen randomly. More formally, it is "a sequence of independent, identically distributed (IID) random data points." In other words, the terms random sample and IID are synonymous. In statistics, "random sample" is the typical terminology, but in probability, it is more common to ...

  7. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    A key result in Efron's seminal paper that introduced the bootstrap [4] is the favorable performance of bootstrap methods using sampling with replacement compared to prior methods like the jackknife that sample without replacement. However, since its introduction, numerous variants on the bootstrap have been proposed, including methods that ...

  8. Random permutation - Wikipedia

    en.wikipedia.org/wiki/Random_permutation

    An inefficient brute-force method for sampling without replacement could select from the numbers between 1 and n at every step, retrying the selection whenever the random number picked is a repeat of a number already selected until selecting a number that has not yet been selected. The expected number of retries per step in such cases will ...

  9. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    A variety of data re-sampling techniques are implemented in the imbalanced-learn package [1] compatible with the scikit-learn Python library. The re-sampling techniques are implemented in four different categories: undersampling the majority class, oversampling the minority class, combining over and under sampling, and ensembling sampling.