Search results
Results From The WOW.Com Content Network
Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".
Although all decimal fractions are fractions, and thus it is possible to use a rational data type to represent it exactly, it may be more convenient in many situations to consider only non-repeating decimal fractions (fractions whose denominator is a power of ten). For example, fractional units of currency worldwide are mostly based on a ...
The repeating decimal commonly written as 0.999... represents exactly the same quantity as the number one. Despite having the appearance of representing a smaller number, 0.999... is a symbol for the number 1 in exactly the same way that 0.333... is an equivalent notation for the number represented by the fraction 1 ⁄ 3. [438]
An irrational number stays aperiodic (with an infinite number of non-repeating digits) in all integral bases. Thus, for example in base 2, π = 3.1415926... 10 can be written as the aperiodic 11.001001000011111... 2. Putting overscores, n, or dots, ṅ, above the common digits is a convention used to represent repeating rational expansions. Thus:
A repeating decimal is an infinite decimal that, after some place, repeats indefinitely the same sequence of digits (e.g., 5.123144144144144... = 5.123 144). [4] An infinite decimal represents a rational number, the quotient of two integers, if and only if it is a repeating decimal or has a finite number of non-zero digits.
Numerical cognition is a subdiscipline of cognitive science that studies the cognitive, developmental and neural bases of numbers and mathematics.As with many cognitive science endeavors, this is a highly interdisciplinary topic, and includes researchers in cognitive psychology, developmental psychology, neuroscience and cognitive linguistics.
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
Algebraic number: Any number that is the root of a non-zero polynomial with rational coefficients. Transcendental number: Any real or complex number that is not algebraic. Examples include e and π. Trigonometric number: Any number that is the sine or cosine of a rational multiple of π.