Search results
Results From The WOW.Com Content Network
A single-electron transistor (SET) is a sensitive electronic device based on the Coulomb blockade effect. In this device the electrons flow through a tunnel junction between source/drain to a quantum dot (conductive island). Moreover, the electrical potential of the island can be tuned by a third electrode, known as the gate, which is ...
The picture represents a typical ECL circuit diagram based on Motorola's MECL. In this schematic, transistor T5′ represents the output transistor of a previous ECL gate that provides a logic signal to input transistor T1 of an OR/NOR gate whose other input is at T2 and has outputs Y and Y.
A load line diagram, illustrating an operating point in the transistor's active region.. Biasing is the setting of the DC operating point of an electronic component. For bipolar junction transistors (BJTs), the operating point is defined as the steady-state DC collector-emitter voltage and the collector current with no input signal applied.
The bipolar junction transistor, the first type of transistor to be mass-produced, is a combination of two junction diodes and is formed of either a thin layer of p-type semiconductor sandwiched between two n-type semiconductors (an n–p–n transistor), or a thin layer of n-type semiconductor sandwiched between two p-type semiconductors (a p ...
3D model of a TO-92 package, commonly used for small bipolar transistors. A bipolar junction transistor (BJT) is a type of transistor that uses both electrons and electron holes as charge carriers. In contrast, a unipolar transistor, such as a field-effect transistor (FET), uses only one kind of charge carrier.
The schematic diagram symbol for a unijunction transistor represents the emitter lead with an arrow, showing the direction of conventional current when the emitter-base junction is conducting a current. A complementary UJT uses a p-type base and an n-type emitter, and operates the same as the n-type base device but with all voltage polarities ...
To solve the problem with the high output resistance of the simple output stage the second schematic adds to this a "totem-pole" ("push–pull") output. It consists of the two n-p-n transistors V 3 and V 4, the "lifting" diode V 5 and the current-limiting resistor R 3 (see the figure on the right).
The intersections of the load line with the transistor characteristic curves represent the circuit-constrained values of I C and V CE at different base currents. [2] If the transistor could pass all the current available, with no voltage dropped across it, the collector current would be the supply voltage V CC over R L. This is the point where ...