Search results
Results From The WOW.Com Content Network
The list on the right shows the numbers 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 (the Fibonacci sequence). The 2, 8, and 9 resemble Arabic numerals more than Eastern Arabic numerals or Indian numerals .
List comprehension is a syntactic construct available in some programming languages for creating a list based on existing lists. It follows the form of the mathematical set-builder notation (set comprehension) as distinct from the use of map and filter functions.
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
Fibonacci numbers are used in a polyphase version of the merge sort algorithm in which an unsorted list is divided into two lists whose lengths correspond to sequential Fibonacci numbers—by dividing the list so that the two parts have lengths in the approximate proportion φ.
A Fibonacci sequence of order n is an integer sequence in which each sequence element is the sum of the previous elements (with the exception of the first elements in the sequence). The usual Fibonacci numbers are a Fibonacci sequence of order 2.
That is to say, the Fibonacci sequence is a divisibility sequence. F p is prime for 8 of the first 10 primes p; the exceptions are F 2 = 1 and F 19 = 4181 = 37 × 113. However, Fibonacci primes appear to become rarer as the index increases. F p is prime for only 26 of the 1229 primes p smaller than 10,000. [3]
Every sequence of positive integers satisfying the Fibonacci recurrence occurs, shifted by at most finitely many positions, in the Wythoff array. In particular, the Fibonacci sequence itself is the first row, and the sequence of Lucas numbers appears in shifted form in the second row ( Morrison 1980 ).
Here the fibonorial constant (also called the fibonacci factorial constant [1]) is defined by = = (), where = and is the golden ratio. An approximate truncated value of C {\displaystyle C} is 1.226742010720 (see (sequence A062073 in the OEIS ) for more digits).