When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Furstenberg's proof of the infinitude of primes - Wikipedia

    en.wikipedia.org/wiki/Furstenberg's_proof_of_the...

    In mathematics, particularly in number theory, Hillel Furstenberg's proof of the infinitude of primes is a topological proof that the integers contain infinitely many prime numbers. When examined closely, the proof is less a statement about topology than a statement about certain properties of arithmetic sequences. [1] [2] Unlike Euclid's ...

  3. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Since no prime number divides 1, p cannot be in the list. This means that at least one more prime number exists that is not in the list. This proves that for every finite list of prime numbers there is a prime number not in the list. [4] In the original work, Euclid denoted the arbitrary finite set of prime numbers as A, B, Γ. [5]

  4. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    Because the set of primes is a computably enumerable set, by Matiyasevich's theorem, it can be obtained from a system of Diophantine equations. Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given number k + 2 is prime if and only if that system has a solution in nonnegative integers: [7]

  5. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    D. J. Newman gives a quick proof of the prime number theorem (PNT). The proof is "non-elementary" by virtue of relying on complex analysis, but uses only elementary techniques from a first course in the subject: Cauchy's integral formula, Cauchy's integral theorem and estimates of complex integrals. Here is a brief sketch of this proof.

  6. Euclid's lemma - Wikipedia

    en.wikipedia.org/wiki/Euclid's_lemma

    Any prime number is prime to any number it does not measure. [note 7] Proposition 30 If two numbers, by multiplying one another, make the same number, and any prime number measures the product, it also measures one of the original numbers. [note 8] Proof of 30 If c, a prime number, measure ab, c measures either a or b. Suppose c does not measure a.

  7. Primorial prime - Wikipedia

    en.wikipedia.org/wiki/Primorial_prime

    As of December 2024, the largest known prime of the form p n # + 1 is 7351117# + 1 (n = 498,865) with 3,191,401 digits, also found by the PrimeGrid project. Euclid's proof of the infinitude of the prime numbers is commonly misinterpreted as defining the primorial primes, in the following manner: [2]

  8. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    In 1737, Euler related the study of prime numbers to what is known now as the Riemann zeta function: he showed that the value () reduces to a ratio of two infinite products, Π p / Π (p–1), for all primes p, and that the ratio is infinite. [1] [2] In 1775, Euler stated the theorem for the cases of a + nd, where a = 1. [3]

  9. Euclid–Euler theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid–Euler_theorem

    Euler's proof is short [1] and depends on the fact that the sum of divisors function σ is multiplicative; that is, if a and b are any two relatively prime integers, then σ(ab) = σ(a)σ(b). For this formula to be valid, the sum of divisors of a number must include the number itself, not just the proper divisors.