Search results
Results From The WOW.Com Content Network
Statistical risk is a quantification of a situation's risk using statistical methods.These methods can be used to estimate a probability distribution for the outcome of a specific variable, or at least one or more key parameters of that distribution, and from that estimated distribution a risk function can be used to obtain a single non-negative number representing a particular conception of ...
A standard application of SURE is to choose a parametric form for an estimator, and then optimize the values of the parameters to minimize the risk estimate. This technique has been applied in several settings. For example, a variant of the James–Stein estimator can be derived by finding the optimal shrinkage estimator. [2]
The Dirac comb of period 2 π, although not strictly a function, is a limiting form of many directional distributions. It is essentially a wrapped Dirac delta function. It represents a discrete probability distribution concentrated at 2 π n — a degenerate distribution — but the notation treats it as if it were a continuous distribution.
In statistical process control (SPC), the ¯ and R chart is a type of scheme, popularly known as control chart, used to monitor the mean and range of a normally distributed variables simultaneously, when samples are collected at regular intervals from a business or industrial process. [1]
In financial mathematics, a risk measure is used to determine the amount of an asset or set of assets (traditionally currency) to be kept in reserve. The purpose of this reserve is to make the risks taken by financial institutions , such as banks and insurance companies, acceptable to the regulator .
The Bayes risk of ^ is defined as ((, ^)), where the expectation is taken over the probability distribution of : this defines the risk function as a function of ^. An estimator θ ^ {\displaystyle {\widehat {\theta }}} is said to be a Bayes estimator if it minimizes the Bayes risk among all estimators.
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.
That is, if portfolio always has better values than portfolio under almost all scenarios then the risk of should be less than the risk of . [2] E.g. If is an in the money call option (or otherwise) on a stock, and is also an in the money call option with a lower strike price.