When.com Web Search

  1. Ads

    related to: transcendental number vs irrational

Search results

  1. Results From The WOW.Com Content Network
  2. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    For example, the square root of 2 is an irrational number, but it is not a transcendental number as it is a root of the polynomial equation x 2 − 2 = 0. The golden ratio (denoted or ) is another irrational number that is not transcendental, as it is a root of the polynomial equation x 2 − x − 1 = 0.

  3. Transcendental number theory - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number_theory

    Transcendental numbers therefore represent the typical case; even so, it may be extremely difficult to prove that a given number is transcendental (or even simply irrational). For this reason transcendence theory often works towards a more quantitative approach.

  4. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    All rational numbers are real, but the converse is not true. Irrational numbers (): Real numbers that are not rational. Imaginary numbers: Numbers that equal the product of a real number and the imaginary unit , where =. The number 0 is both real and imaginary.

  5. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    Because the algebraic numbers form a subfield of the real numbers, many irrational real numbers can be constructed by combining transcendental and algebraic numbers. For example, 3 π + 2, π + √ 2 and e √ 3 are irrational (and even transcendental).

  6. Computable number - Wikipedia

    en.wikipedia.org/wiki/Computable_number

    A real number is computable if and only if the set of natural numbers it represents (when written in binary and viewed as a characteristic function) is computable. The set of computable real numbers (as well as every countable, densely ordered subset of computable reals without ends) is order-isomorphic to the set of rational numbers.

  7. Category:Real transcendental numbers - Wikipedia

    en.wikipedia.org/wiki/Category:Real...

    This category is about the real numbers which are transcendental. All of those are irrational. Subcategories. ... Pages in category "Real transcendental numbers"

  8. Hilbert's seventh problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_seventh_problem

    In an isosceles triangle, if the ratio of the base angle to the angle at the vertex is algebraic but not rational, is then the ratio between base and side always transcendental? Is a b {\displaystyle a^{b}} always transcendental , for algebraic a ∉ { 0 , 1 } {\displaystyle a\not \in \{0,1\}} and irrational algebraic b {\displaystyle b} ?

  9. Cantor's first set theory article - Wikipedia

    en.wikipedia.org/wiki/Cantor's_first_set_theory...

    The proof by contradiction used to prove the existence of transcendental numbers from the countability of the real algebraic numbers and the uncountability of real numbers. Cantor's December 2nd letter mentions this existence proof but does not contain it. Here is a proof: Assume that there are no transcendental numbers in [a, b].