Search results
Results From The WOW.Com Content Network
If the truth table for a NAND gate is examined or by applying De Morgan's laws, it can be seen that if any of the inputs are 0, then the output will be 1.To be an OR gate, however, the output must be 1 if any input is 1.
In digital electronics, a NAND gate (NOT-AND) is a logic gate which produces an output which is false only if all its inputs are true; thus its output is complement to that of an AND gate. A LOW (0) output results only if all the inputs to the gate are HIGH (1); if any input is LOW (0), a HIGH (1) output results.
OR-AND-invert gates or OAI-gates are logic gates comprising OR gates followed by a NAND gate. ... Truth table 2-1 OAI Input A B C:
For an n-input LUT, the truth table will have 2^n values (or rows in the above tabular format), completely specifying a Boolean function for the LUT. By representing each Boolean value as a bit in a binary number, truth table values can be efficiently encoded as integer values in electronic design automation (EDA) software. For example, a 32 ...
The 2-1 AOI gate can be represented by the following boolean equation and truth table ... compared to 10 transistors using a 2-input NAND gate (4 transistors), an ...
The two-input version implements logical equality, behaving according to the truth table to the right, and hence the gate is sometimes called an "equivalence gate". A high output (1) results if both of the inputs to the gate are the same. If one but not both inputs are high (1), a low output (0) results.
The 3-input Fredkin gate is functionally complete reversible gate by itself – a sole sufficient operator. There are many other three-input universal logic gates, such as the Toffoli gate . In quantum computing , the Hadamard gate and the T gate are universal, albeit with a slightly more restrictive definition than that of functional completeness.
The NOR gate is a digital logic gate that implements logical NOR - it behaves according to the truth table to the right. A HIGH output (1) results if both the inputs to the gate are LOW (0); if one or both input is HIGH (1), a LOW output (0) results.