When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Completeness of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Completeness_of_the_real...

    In the decimal number system, completeness is equivalent to the statement that any infinite string of decimal digits is actually a decimal representation for some real number. Depending on the construction of the real numbers used, completeness may take the form of an axiom (the completeness axiom), or may be a theorem proven from the construction.

  3. Completeness (statistics) - Wikipedia

    en.wikipedia.org/wiki/Completeness_(statistics)

    In statistics, completeness is a property of a statistic computed on a sample dataset in relation to a parametric model of the dataset. It is opposed to the concept of an ancillary statistic . While an ancillary statistic contains no information about the model parameters, a complete statistic contains only information about the parameters, and ...

  4. Completeness (logic) - Wikipedia

    en.wikipedia.org/wiki/Completeness_(logic)

    Semantic completeness is the converse of soundness for formal systems. A formal system is complete with respect to tautologousness or "semantically complete" when all its tautologies are theorems, whereas a formal system is "sound" when all theorems are tautologies (that is, they are semantically valid formulas: formulas that are true under every interpretation of the language of the system ...

  5. Construction of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Construction_of_the_real...

    An axiomatic definition of the real numbers consists of defining them as the elements of a complete ordered field. [2] [3] [4] This means the following: The real numbers form a set, commonly denoted , containing two distinguished elements denoted 0 and 1, and on which are defined two binary operations and one binary relation; the operations are called addition and multiplication of real ...

  6. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    The least-upper-bound property is one form of the completeness axiom for the real numbers, and is sometimes referred to as Dedekind completeness. [2] It can be used to prove many of the fundamental results of real analysis, such as the intermediate value theorem, the Bolzano–Weierstrass theorem, the extreme value theorem, and the Heine ...

  7. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    The easiest way to prove that some new problem is NP-complete is first to prove that it is in NP, and then to reduce some known NP-complete problem to it. Therefore, it is useful to know a variety of NP-complete problems. The list below contains some well-known problems that are NP-complete when expressed as decision problems.

  8. Gödel's completeness theorem - Wikipedia

    en.wikipedia.org/wiki/Gödel's_completeness_theorem

    The completeness theorem says that if a formula is logically valid then there is a finite deduction (a formal proof) of the formula. Thus, the deductive system is "complete" in the sense that no additional inference rules are required to prove all the logically valid formulae. A conv

  9. Completeness (order theory) - Wikipedia

    en.wikipedia.org/wiki/Completeness_(order_theory)

    All completeness properties are described along a similar scheme: one describes a certain class of subsets of a partially ordered set that are required to have a supremum or required to have an infimum. Hence every completeness property has its dual, obtained by inverting the order-dependent definitions in the given statement. Some of the ...