When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Two-photon physics - Wikipedia

    en.wikipedia.org/wiki/Two-photon_physics

    This fermion pair can be leptons or quarks. Thus, two-photon physics experiments can be used as ways to study the photon structure, or, somewhat metaphorically, what is "inside" the photon. The photon fluctuates into a fermion–antifermion pair. Creation of a fermion–antifermion pair through the direct two-photon interaction.

  3. Photon - Wikipedia

    en.wikipedia.org/wiki/Photon

    Photons can be scattered by matter. For example, photons scatter so many times in the solar radiative zone after leaving the core of the Sun that radiant energy takes about a million years to reach the convection zone. [116] However, photons emitted from the sun's photosphere take only 8.3 minutes to reach Earth. [117]

  4. Matter creation - Wikipedia

    en.wikipedia.org/wiki/Matter_creation

    To create an electron-positron pair, the total energy of the photons, in the rest frame, must be at least 2m e c 2 = 2 × 0.511 MeV = 1.022 MeV (m e is the mass of one electron and c is the speed of light in vacuum), an energy value that corresponds to soft gamma ray photons.

  5. Absorption (electromagnetic radiation) - Wikipedia

    en.wikipedia.org/wiki/Absorption_(electromagnetic...

    By recording the attenuation of light for various wavelengths, an absorption spectrum can be obtained. In physics, absorption of electromagnetic radiation is how matter (typically electrons bound in atoms) takes up a photon's energy—and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy). [1]

  6. Quantization of the electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Quantization_of_the...

    The wavelength of the station is λ = c/ν = 3 m, so that λ/(2π) = 48 cm and the volume is 0.109 m 3. The energy content of this volume element at 5 km from the station is 2.1 × 10 −10 × 0.109 = 2.3 × 10 −11 J, which amounts to 3.4 × 10 14 photons per ().

  7. Photon structure function - Wikipedia

    en.wikipedia.org/wiki/Photon_structure_function

    Photons with high photon energy can transform in quantum mechanics to lepton and quark pairs, the latter fragmented subsequently to jets of hadrons, i.e. protons, pions, etc.At high energies E the lifetime t of such quantum fluctuations of mass M becomes nearly macroscopic: t ≈ E/M 2; this amounts to flight lengths as large as one micrometer for electron pairs in a 100 GeV photon beam, while ...

  8. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    The minuscule mass difference is the energy needed to split the molecule into three individual atoms (divided by c 2), which was given off as heat when the molecule formed (this heat had mass). Similarly, a stick of dynamite in theory weighs a little bit more than the fragments after the explosion; in this case the mass difference is the energy ...

  9. Radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Radiative_transfer

    In radiometric terms, the passage can be completely characterized by the amount of energy radiated in each of the two senses in each spatial direction, per unit time, per unit area of surface of sourcing passage, per unit solid angle of reception at a distance, per unit wavelength interval being considered (polarization will be ignored for the ...