Search results
Results From The WOW.Com Content Network
In mathematical writing, the greater-than sign is typically placed between two values being compared and signifies that the first number is greater than the second number. Examples of typical usage include 1.5 > 1 and 1 > −2. The less-than sign and greater-than sign always "point" to the smaller number.
Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics.It states that every even natural number greater than 2 is the sum of two prime numbers.
In engineering sciences, less formal use of the notation is to state that one quantity is "much greater" than another, [5] normally by several orders of magnitude. The notation a ≪ b means that a is much less than b. [6] The notation a ≫ b means that a is much greater than b. [7]
For each ordinal, + is the least cardinal number greater than . The cardinality of the natural numbers is denoted aleph-null ( ℵ 0 {\displaystyle \aleph _{0}} ), while the cardinality of the real numbers is denoted by " c {\displaystyle {\mathfrak {c}}} " (a lowercase fraktur script "c"), and is also referred to as the cardinality of the ...
A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem , there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes .
In probability theory, Markov's inequality gives an upper bound on the probability that a non-negative random variable is greater than or equal to some positive constant. Markov's inequality is tight in the sense that for each chosen positive constant, there exists a random variable such that the inequality is in fact an equality. [1]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Take each digit of the number (371) in reverse order (173), multiplying them successively by the digits 1, 3, 2, 6, 4, 5, repeating with this sequence of multipliers as long as necessary (1, 3, 2, 6, 4, 5, 1, 3, 2, 6, 4, 5, ...), and adding the products (1×1 + 7×3 + 3×2 = 1 + 21 + 6 = 28). The original number is divisible by 7 if and only if ...