Search results
Results From The WOW.Com Content Network
One such complicating feature is the relation between the viscosity model for a pure fluid and the model for a fluid mixture which is called mixing rules. When scientists and engineers use new arguments or theories to develop a new viscosity model, instead of improving the reigning model, it may lead to the first model in a new class of models.
Mixtures can be either homogeneous or heterogeneous: a mixture of uniform composition and in which all components are in the same phase, such as salt in water, is called homogeneous, whereas a mixture of non-uniform composition and of which the components can be easily identified, such as sand in water, it is called heterogeneous.
The term ordered mixture was first introduced to describe a completely homogeneous mixture where the two components adhere to each other to form ordered units. [5] However, a completely homogeneous mixture is only achievable in theory and other denotations were introduced later such as adhesive mixture or interactive mixture.
Homogenization (from "homogeneous;" Greek, homogenes: homos, same + genos, kind) [5] is the process of converting two immiscible liquids (i.e. liquids that are not soluble, in all proportions, one in another) into an emulsion [6] (Mixture of two or more liquids that are generally immiscible).
The IUPAC definition of a solid solution is a "solid in which components are compatible and form a unique phase". [3]The definition "crystal containing a second constituent which fits into and is distributed in the lattice of the host crystal" given in refs., [4] [5] is not general and, thus, is not recommended.
Mixing of liquids occurs frequently in process engineering. The nature of liquids to blend determines the equipment used. Single-phase blending tends to involve low-shear, high-flow mixers to cause liquid engulfment, while multi-phase mixing generally requires the use of high-shear, low-flow mixers to create droplets of one liquid in laminar, turbulent or transitional flow regimes, depending ...
Miscibility (/ ˌ m ɪ s ɪ ˈ b ɪ l ɪ t i /) is the property of two substances to mix in all proportions (that is, to fully dissolve in each other at any concentration), forming a homogeneous mixture (a solution). Such substances are said to be miscible (etymologically equivalent to the common term "mixable").
A mixture can be determined to be homogeneous when everything is settled and equal, and the liquid, gas, the object is one color or the same form. Various models have been proposed to model the concentrations in different phases. The phenomena to be considered are mass rates and reaction. [citation needed]