Search results
Results From The WOW.Com Content Network
A number of materials contract on heating within certain temperature ranges; this is usually called negative thermal expansion, rather than "thermal contraction".For example, the coefficient of thermal expansion of water drops to zero as it is cooled to 3.983 °C (39.169 °F) and then becomes negative below this temperature; this means that water has a maximum density at this temperature, and ...
However, it reaches zero only when the system has a unique ground state (i.e., the state with the minimum thermal energy has only one configuration, or microstate). Microstates are used here to describe the probability of a system being in a specific state, as each microstate is assumed to have the same probability of occurring, so macroscopic ...
The zeroth law of thermodynamics states: If two systems are each in thermal equilibrium with a third, they are also in thermal equilibrium with each other. This statement implies that thermal equilibrium is an equivalence relation on the set of thermodynamic systems under consideration.
Thermal equilibrium: When the temperature throughout a system is uniform, the system is in thermal equilibrium. Mechanical equilibrium : If at every point within a given system there is no change in pressure with time, and there is no movement of material, the system is in mechanical equilibrium.
Development of a thermal equilibrium in a closed system over time through a heat flow that levels out temperature differences. Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A ...
As quoted in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Physical Properties of the Rare Earth Metals
Thermal physics, generally speaking, is the study of the statistical nature of physical systems from an energetic perspective. Starting with the basics of heat and temperature, thermal physics analyzes the first law of thermodynamics and second law of thermodynamics from the statistical perspective, in terms of the number of microstates corresponding to a given macrostate.
Thus, the two systems are in thermal equilibrium with each other, or they are in mutual equilibrium. Another consequence of equivalence is that thermal equilibrium is described as a transitive relation: [7]: 56 [10] If A is in thermal equilibrium with B and if B is in thermal equilibrium with C, then A is in thermal equilibrium with C.