Search results
Results From The WOW.Com Content Network
The loss tangent is defined by the angle between the capacitor's impedance vector and the negative reactive axis. When representing the electrical circuit parameters as vectors in a complex plane, known as phasors , a capacitor's loss tangent is equal to the tangent of the angle between the capacitor's impedance vector and the negative reactive ...
The loss tangent is defined by the angle between the capacitor's impedance vector and the negative reactive axis. If the capacitor is used in an AC circuit, the dissipation factor due to the non-ideal capacitor is expressed as the ratio of the resistive power loss in the ESR to the reactive power oscillating in the capacitor, or
The linear term in jω in this transfer function can be derived by the following method, which is an application of the open-circuit time constant method to this example. Set the signal source to zero. Select capacitor C 2, replace it by a test voltage V X, and replace C 1 by an open circuit.
It has the advantage that the balance equation is independent of frequency. The connections of the Schering bridge under balance conditions are shown in the figure below. In this diagram: C1 = capacitor whose capacitance is to be determined, R1 = a series resistance representing the loss in the capacitor C1, C2 = a standard capacitor,
Likewise, relative permittivity is the ratio of the capacitance of a capacitor using that material as a dielectric, compared with a similar capacitor that has vacuum as its dielectric. Relative permittivity is also commonly known as the dielectric constant, a term still used but deprecated by standards organizations in engineering [ 15 ] as ...
It is the time required to charge the capacitor, through the resistor, from an initial charge voltage of zero to approximately 63.2% of the value of an applied DC voltage, or to discharge the capacitor through the same resistor to approximately 36.8% of its initial charge voltage.
The factor 2π makes Q expressible in simpler terms, involving only the coefficients of the second-order differential equation describing most resonant systems, electrical or mechanical. In electrical systems, the stored energy is the sum of energies stored in lossless inductors and capacitors ; the lost energy is the sum of the energies ...
There are two main components to these losses, the metal loss and the dielectric loss. The loss of most transmission lines are dominated by the metal loss, which causes a frequency dependency due to finite conductivity of metals, and the skin effect inside a conductor. The skin effect causes R along the conductor to be approximately dependent ...