When.com Web Search

  1. Ads

    related to: difference quotient khan academy math 6th grade module 1

Search results

  1. Results From The WOW.Com Content Network
  2. Difference quotient - Wikipedia

    en.wikipedia.org/wiki/Difference_quotient

    Difference quotients may also find relevance in applications involving Time discretization, where the width of the time step is used for the value of h. The difference quotient is sometimes also called the Newton quotient [10] [12] [13] [14] (after Isaac Newton) or Fermat's difference quotient (after Pierre de Fermat). [15]

  3. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The simplest method is to use finite difference approximations. A simple two-point estimation is to compute the slope of a nearby secant line through the points (x, f(x)) and (x + h, f(x + h)). [1] Choosing a small number h, h represents a small change in x, and it can be either positive or negative.

  4. Symmetric derivative - Wikipedia

    en.wikipedia.org/wiki/Symmetric_derivative

    For differentiable functions, the symmetric difference quotient does provide a better numerical approximation of the derivative than the usual difference quotient. [3] The symmetric derivative at a given point equals the arithmetic mean of the left and right derivatives at that point, if the latter two both exist. [1] [2]: 6

  5. Module (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Module_(mathematics)

    In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a (not necessarily commutative) ring. The concept of a module also generalizes the notion of an abelian group, since the abelian groups are exactly the modules over the ring of integers. [1]

  6. Ideal quotient - Wikipedia

    en.wikipedia.org/wiki/Ideal_quotient

    The ideal quotient corresponds to set difference in algebraic geometry. [1] More precisely, If W is an affine variety (not necessarily irreducible) and V is a subset of the affine space (not necessarily a variety), then

  7. Discrete calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_calculus

    Discrete calculus or the calculus of discrete functions, is the mathematical study of incremental change, in the same way that geometry is the study of shape and algebra is the study of generalizations of arithmetic operations.

  8. Finite difference coefficient - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_coefficient

    For arbitrary stencil points and any derivative of order < up to one less than the number of stencil points, the finite difference coefficients can be obtained by solving the linear equations [6] ( s 1 0 ⋯ s N 0 ⋮ ⋱ ⋮ s 1 N − 1 ⋯ s N N − 1 ) ( a 1 ⋮ a N ) = d !

  9. Projective module - Wikipedia

    en.wikipedia.org/wiki/Projective_module

    The R-module R/I is locally free since R is Boolean (and it is finitely generated as an R-module too, with a spanning set of size 1), but R/I is not projective because I is not a principal ideal. (If a quotient module R/I, for any commutative ring R and ideal I, is a projective R-module then I is principal.)