Search results
Results From The WOW.Com Content Network
The deterministic effects that can lead to acute radiation syndrome only occur in the case of high doses (> ~10 rad or > 0.1 Gy) and high dose rates (> ~10 rad/h or > 0.1 Gy/h). A model of deterministic risk would require different weighting factors (not yet established) than are used in the calculation of equivalent and effective dose.
Recognized effects of higher acute radiation doses are described in more detail in the article on radiation poisoning.Although the International System of Units (SI) defines the sievert (Sv) as the unit of radiation dose equivalent, chronic radiation levels and standards are still often given in units of millirems (mrem), where 1 mrem equals 1/1,000 of a rem and 1 rem equals 0.01 Sv.
Preventive (adjuvant) doses are typically around 45–60 Gy in 1.8–2 Gy fractions (for breast, head, and neck cancers). The average radiation dose from an abdominal X-ray is 0.7 millisieverts (0.0007 Sv), that from an abdominal CT scan is 8 mSv, that from a pelvic CT scan is 6 mGy, and that from a selective CT scan of the abdomen and the ...
The fundamental quantity is the absorbed dose (D), which is defined as the mean energy imparted [by ionising radiation] (dE) per unit mass (dm) of material (D = dE/dm) [8] The SI unit of absorbed dose is the gray (Gy) defined as one joule per kilogram. Absorbed dose, as a point measurement, is suitable for describing localised (i.e. partial ...
D T,R is the absorbed dose in grays (Gy) in tissue T by radiation type R and W R is the radiation weighting factor defined by regulation. Thus for example, an absorbed dose of 1 Gy by alpha particles will lead to an equivalent dose of 20 Sv, and an equivalent dose of radiation is estimated to have the same biological effect as an equal amount ...
The rad is a unit of absorbed radiation dose, defined as 1 rad = 0.01 Gy = 0.01 J/kg. [1] It was originally defined in CGS units in 1953 as the dose causing 100 ergs of energy to be absorbed by one gram of matter.
Dose area product (DAP) is a quantity used in assessing the radiation risk from diagnostic X-ray radiography examinations and interventional procedures, like angiography.It is defined as the absorbed dose multiplied by the area irradiated, expressed in gray-centimetres squared (Gy·cm 2 [1] – sometimes the prefixed units dGy·cm 2, mGy·cm 2 or cGy·cm 2 are also used). [2]
The roentgen or röntgen (/ ˈ r ɛ n t ɡ ə n,-dʒ ə n, ˈ r ʌ n t-/; [2] symbol R) is a legacy unit of measurement for the exposure of X-rays and gamma rays, and is defined as the electric charge freed by such radiation in a specified volume of air divided by the mass of that air (statcoulomb per kilogram).