Ads
related to: high reluctance magnetic circuit
Search results
Results From The WOW.Com Content Network
Magnetic reluctance, or magnetic resistance, is a concept used in the analysis of magnetic circuits. It is defined as the ratio of magnetomotive force (mmf) to magnetic flux . It represents the opposition to magnetic flux, and depends on the geometry and composition of an object.
Magnetic complex reluctance (SI Unit: H −1) is a measurement of a passive magnetic circuit (or element within that circuit) dependent on sinusoidal magnetomotive force (SI Unit: At·Wb −1) and sinusoidal magnetic flux (SI Unit: T·m 2), and this is determined by deriving the ratio of their complex effective amplitudes.[Ref. 1-3] = ˙ ˙ = ˙ ˙ =
Most importantly, magnetic circuits are nonlinear; the reluctance in a magnetic circuit is not constant, as resistance is, but varies depending on the magnetic field. At high magnetic fluxes the ferromagnetic materials used for the cores of magnetic circuits saturate , limiting further increase of the magnetic flux through, so above this level ...
It is the property of certain substances or phenomena that give rise to magnetic fields: =, where Φ is the magnetic flux and is the reluctance of the circuit. It can be seen that the magnetomotive force plays a role in this equation analogous to the voltage V in Ohm's law , V = IR , since it is the cause of magnetic flux in a magnetic circuit ...
A useful tool for dealing with high frequency magnetic effects is the complex permeability. While at low frequencies in a linear material the magnetic field and the auxiliary magnetic field are simply proportional to each other through some scalar permeability, at high frequencies these quantities will react to each other with some lag time. [36]
A variable reluctance sensor (commonly called a VR sensor) is a transducer that measures changes in magnetic reluctance.When combined with basic electronic circuitry, the sensor detects the change in presence or proximity of ferrous objects.
A simple transformer and its gyrator-capacitor model. R is the reluctance of the physical magnetic circuit. The gyrator–capacitor model [1] - sometimes also the capacitor-permeance model [2] - is a lumped-element model for magnetic circuits, that can be used in place of the more common resistance–reluctance model.
Cross-section of switched reluctance machine with 6 stator and 4 rotor poles. Notice the concentrated windings on the stator poles. A reluctance motor is a type of electric motor that induces non-permanent magnetic poles on the ferromagnetic rotor. The rotor does not have any windings. It generates torque through magnetic reluctance.