When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.

  3. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.

  4. Three-term recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Three-term_recurrence_relation

    If the {} and {} are constant and independent of the step index n, then the TTRR is a Linear recurrence with constant coefficients of order 2. Arguably the simplest, and most prominent, example for this case is the Fibonacci sequence , which has constant coefficients a n = b n = 1 {\displaystyle a_{n}=b_{n}=1} .

  5. Constant-recursive sequence - Wikipedia

    en.wikipedia.org/wiki/Constant-recursive_sequence

    This characterization is because the order-linear recurrence relation can be understood as a proof of linear dependence between the sequences (+) = for =, …,. An extension of this argument shows that the order of the sequence is equal to the dimension of the sequence space generated by ( s n + r ) n = 0 ∞ {\displaystyle (s_{n+r})_{n=0 ...

  6. Lucas sequence - Wikipedia

    en.wikipedia.org/wiki/Lucas_sequence

    In mathematics, the Lucas sequences (,) and (,) are certain constant-recursive integer sequences that satisfy the recurrence relation = where and are fixed integers.Any sequence satisfying this recurrence relation can be represented as a linear combination of the Lucas sequences (,) and (,).

  7. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    Find recurrence relations for sequences—the form of a generating function may suggest a recurrence formula. Find relationships between sequences—if the generating functions of two sequences have a similar form, then the sequences themselves may be related. Explore the asymptotic behaviour of sequences. Prove identities involving sequences.

  8. Integration by reduction formulae - Wikipedia

    en.wikipedia.org/wiki/Integration_by_reduction...

    In integral calculus, integration by reduction formulae is a method relying on recurrence relations.It is used when an expression containing an integer parameter, usually in the form of powers of elementary functions, or products of transcendental functions and polynomials of arbitrary degree, can't be integrated directly.

  9. Power series solution of differential equations - Wikipedia

    en.wikipedia.org/wiki/Power_series_solution_of...

    A further restriction is that the series coefficients will be specified by a nonlinear recurrence (the nonlinearities are inherited from the differential equation). In order for the solution method to work, as in linear equations, it is necessary to express every term in the nonlinear equation as a power series so that all of the terms may be ...