Search results
Results From The WOW.Com Content Network
The day is divided into 10 16 (16 10) hexadecimal hours, each hour into 100 16 (256 10) hexadecimal minutes, and each minute into 10 16 (16 10) hexadecimal seconds. History [ edit ]
Closely related to system time is process time, which is a count of the total CPU time consumed by an executing process.It may be split into user and system CPU time, representing the time spent executing user code and system kernel code, respectively.
When dealing with periods that do not encompass a UTC leap second, the difference between two Unix time numbers is equal to the duration in seconds of the period between the corresponding points in time. This is a common computational technique. However, where leap seconds occur, such calculations give the wrong answer.
computes the difference in seconds between two time_t values time: returns the current time of the system as a time_t value, number of seconds, (which is usually time since an epoch, typically the Unix epoch). The value of the epoch is operating system dependent; 1900 and 1970 are often used. See RFC 868. clock
[17] The separator used between date values (year, month, week, and day) is the hyphen, while the colon is used as the separator between time values (hours, minutes, and seconds). For example, the 6th day of the 1st month of the year 2009 may be written as "2009-01-06" in the extended format or as "20090106" in the basic format without ambiguity.
The problem exists in systems which measure Unix time—the number of seconds elapsed since the Unix epoch (00:00:00 UTC on 1 January 1970)—and store it in a signed 32-bit integer. The data type is only capable of representing integers between −(2 31 ) and 2 31 − 1 , meaning the latest time that can be properly encoded is 2 31 − 1 ...
Some file archivers and some version control software, when they copy a file from some remote computer to the local computer, adjust the timestamps of the local file to show the date/time in the past when that file was created or modified on that remote computer, rather than the date/time when that file was copied to the local computer.
1.67 minutes (or 1 minute 40 seconds) 10 3: kilosecond: 1 000: 16.7 minutes (or 16 minutes and 40 seconds) 10 6: megasecond: 1 000 000: 11.6 days (or 11 days, 13 hours, 46 minutes and 40 seconds) 10 9: gigasecond: 1 000 000 000: 31.7 years (or 31 years, 252 days, 1 hour, 46 minutes, 40 seconds, assuming that there are 7 leap years in the interval)