Search results
Results From The WOW.Com Content Network
An electrochemical gradient is a gradient of electrochemical potential, usually for an ion that can move across a membrane. The gradient consists of two parts: The chemical gradient, or difference in solute concentration across a membrane. The electrical gradient, or difference in charge across a membrane.
An ion gradient has potential energy and can be used to power chemical reactions when the ions pass through a channel (red). Hydrogen ions, or protons, will diffuse from a region of high proton concentration to a region of lower proton concentration, and an electrochemical concentration gradient of protons across a membrane can be harnessed to ...
It is an active pump that generates a proton concentration gradient across the inner mitochondrial membrane, because there are more protons outside the matrix than inside. The difference in pH and electric charge (ignoring differences in buffer capacity) creates an electrochemical potential difference that works similar to that of a battery or ...
In generic terms, electrochemical potential is the mechanical work done in bringing 1 mole of an ion from a standard state to a specified concentration and electrical potential. According to the IUPAC definition, [ 4 ] it is the partial molar Gibbs energy of the substance at the specified electric potential, where the substance is in a ...
[2] [3] the changes in concentration (emergence of concentration gradients in the solution adjacent to the electrode surface) is the difference in the rate of electrochemical reaction at the electrode and the rate of ion migration in the solution from/to the surface. When a chemical species participating in an electrochemical electrode reaction ...
An electrochemical gradient or concentration gradient is a difference in concentration of a chemical molecule or ion in two separate areas. [6] At equilibrium the concentrations of the ion in both areas will be equal, so if there is a difference in concentration the ions will seek to flow "down" the concentration gradient or from a high ...
Voltage-gated ion channels are generally composed of several subunits arranged in such a way that there is a central pore through which ions can travel down their electrochemical gradients. The channels tend to be ion-specific, although similarly sized and charged ions may sometimes travel through them.
The equilibrium potential for an ion is the membrane potential at which there is no net movement of the ion. [1] [2] [3] The flow of any inorganic ion, such as Na + or K +, through an ion channel (since membranes are normally impermeable to ions) is driven by the electrochemical gradient for that ion.