Search results
Results From The WOW.Com Content Network
The combined transmembrane gradient of protons and charges created by proton pumps is called an electrochemical gradient. An electrochemical gradient represents a store of energy (potential energy) that can be used to drive a multitude of biological processes such as ATP synthesis, nutrient uptake and action potential formation. [citation needed]
An ion gradient has potential energy and can be used to power chemical reactions when the ions pass through a channel (red). Hydrogen ions, or protons, will diffuse from a region of high proton concentration to a region of lower proton concentration, and an electrochemical concentration gradient of protons across a membrane can be harnessed to ...
An electrochemical gradient is a gradient of electrochemical potential, usually for an ion that can move across a membrane. The gradient consists of two parts: The chemical gradient, or difference in solute concentration across a membrane. The electrical gradient, or difference in charge across a membrane.
The complex contains coordinated copper ions and several heme groups. At the same time, eight protons are removed from the mitochondrial matrix (although only four are translocated across the membrane), contributing to the proton gradient. The exact details of proton pumping in Complex IV are still under study. [9] Cyanide is an inhibitor of ...
The protons are pumped from the mitochondrial matrix to the IMS by these respiratory complexes. As a result, an electrochemical gradient is generated, which is combined by forces due to a H + gradient (pH gradient) and a voltage gradient (membrane potential). The pH in the IMS is about 0.7 unit lower than the one in the matrix and the membrane ...
A Proton gradient moves the ions into the vacuole by proton-sodium antiporter or the proton-calcium antiporter. In plants, sucrose transport is distributed throughout the plant by the proton-pump where the pump, as discussed above, creates a gradient of protons so that there are many more on one side of the membrane than the other.
The enzyme uses the energy stored in a proton gradient across a membrane to drive the synthesis of ATP from ADP and phosphate (P i). Estimates of the number of protons required to synthesize one ATP have ranged from three to four, [68] [69] with some suggesting cells can vary this ratio, to suit different conditions. [70]
An uncoupling protein (UCP) is a mitochondrial inner membrane protein that is a regulated proton channel or transporter. An uncoupling protein is thus capable of dissipating the proton gradient generated by NADH-powered pumping of protons from the mitochondrial matrix to the mitochondrial intermembrane space. The energy lost in dissipating the ...