When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...

  3. Volume viscosity - Wikipedia

    en.wikipedia.org/wiki/Volume_viscosity

    which depends only on equilibrium state variables like temperature and density (equation of state). In general, the trace of the stress tensor is the sum of thermodynamic pressure contribution and another contribution which is proportional to the divergence of the velocity field. This coefficient of proportionality is called volume viscosity.

  4. Dynamic similarity (Reynolds and Womersley numbers)

    en.wikipedia.org/wiki/Dynamic_similarity...

    The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.

  5. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    In this view, the data at different roughness ratio ⁠ ε / D ⁠ fall together when plotted against R ∗, demonstrating scaling in the variable R ∗. The following features are present: When ε = 0, then R ∗ is identically zero: flow is always in the smooth pipe regime. The data for these points lie to the left extreme of the abscissa and ...

  6. Viscosity - Wikipedia

    en.wikipedia.org/wiki/Viscosity

    The SI unit of dynamic viscosity is the newton-second per square meter (N·s/m 2), also frequently expressed in the equivalent forms pascal-second (Pa·s), kilogram per meter per second (kg·m −1 ·s −1) and poiseuille (Pl). The CGS unit is the poise (P, or g·cm −1 ·s −1 = 0.1 Pa·s), [28] named after Jean Léonard Marie Poiseuille.

  7. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  8. Viscosity models for mixtures - Wikipedia

    en.wikipedia.org/wiki/Viscosity_models_for_mixtures

    In this section our central macroscopic variables and parameters and their units are temperature [K], pressure [bar], molar mass [g/mol], low density (low pressure or dilute) gas viscosity [μP]. It is, however, common in the industry to use another unit for liquid and high density gas viscosity η {\displaystyle \eta } [cP].

  9. Dynamic modulus - Wikipedia

    en.wikipedia.org/wiki/Dynamic_modulus

    Dynamic modulus (sometimes complex modulus [1]) is the ratio of stress to strain under vibratory conditions (calculated from data obtained from either free or forced vibration tests, in shear, compression, or elongation).