Search results
Results From The WOW.Com Content Network
Modulo operations might be implemented such that a division with a remainder is calculated each time. For special cases, on some hardware, faster alternatives exist. For example, the modulo of powers of 2 can alternatively be expressed as a bitwise AND operation (assuming x is a positive integer, or using a non-truncating definition):
The logical operator XOR sums 2 bits, modulo 2. The use of long division to turn a fraction into a repeating decimal in any base b is equivalent to modular multiplication of b modulo the denominator. For example, for decimal, b = 10.
This table does not describe the logic operations necessary to implement this operation, rather it simply specifies the function of inputs to output values. With respect to the result, this example may be arithmetically viewed as modulo 2 binary addition, and as logically equivalent to the exclusive-or (exclusive disjunction) binary logic ...
Note that is equivalent to zero in the above equation because addition of coefficients is performed modulo 2: = + = (+) = (). Polynomial addition modulo 2 is the same as bitwise XOR. Since XOR is the inverse of itself, polynominal subtraction modulo 2 is the same as bitwise XOR too.
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.
[1] [2] [3] An example is the ring of integers modulo 2. Every Boolean ring gives rise to a Boolean algebra , with ring multiplication corresponding to conjunction or meet ∧ , and ring addition to exclusive disjunction or symmetric difference (not disjunction ∨ , [ 4 ] which would constitute a semiring ).
In Java, all integer types are signed, so the "<<" and ">>" operators perform arithmetic shifts. Java adds the operator ">>>" to perform logical right shifts, but since the logical and arithmetic left-shift operations are identical for signed integer, there is no "<<<" operator in Java. More details of Java shift operators: [10]
In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable.It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings.